A method is proposed that allows the computation of the continuous adjoint of a thermoacoustic network model based on the discretized direct equations. This hybrid approach exploits the self-adjoint character of the duct element, which allows all jump conditions to be derived from the direct scattering matrix. In this way, the need to derive the adjoint equations for every element of the network model is eliminated. This methodology combines the advantages of the discrete and continuous adjoint, as the accuracy of the continuous adjoint is achieved while maintaining the flexibility of the discrete adjoint. It is demonstrated how the obtained adjoint system may be utilized to optimize a thermoacoustic configuration by determining the optimal damper setting for an annular combustor.
A Hybrid Adjoint Network Model for Thermoacoustic Optimization / Schäfer, Felicitas; Magri, Luca; Polifke, Wolfgang. - In: JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. - ISSN 0742-4795. - 144:3(2022), pp. 1-9. [10.1115/1.4051959]
A Hybrid Adjoint Network Model for Thermoacoustic Optimization
Magri Luca;
2022
Abstract
A method is proposed that allows the computation of the continuous adjoint of a thermoacoustic network model based on the discretized direct equations. This hybrid approach exploits the self-adjoint character of the duct element, which allows all jump conditions to be derived from the direct scattering matrix. In this way, the need to derive the adjoint equations for every element of the network model is eliminated. This methodology combines the advantages of the discrete and continuous adjoint, as the accuracy of the continuous adjoint is achieved while maintaining the flexibility of the discrete adjoint. It is demonstrated how the obtained adjoint system may be utilized to optimize a thermoacoustic configuration by determining the optimal damper setting for an annular combustor.File | Dimensione | Formato | |
---|---|---|---|
gtp_144_03_031017.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
914.43 kB
Formato
Adobe PDF
|
914.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995093