The prediction of the drop size distribution (DSD) resulting from liquid atomization is key to the optimization of multiphase flows from gas-turbine propulsion through agriculture to healthcare. Obtaining high-fidelity data of liquid atomization, either experimentally or numerically, is expensive, which makes the exploration of the design space difficult. First, to tackle these challenges, we propose a framework to predict the DSD of a liquid spray based on data as a function of the spray angle, the Reynolds number, and the Weber number. Second, to guide the design of liquid atomizers, the model accurately predicts the volume of fluid contained in drops of specific sizes while providing uncertainty estimation. To do so, we propose a Gaussian process regression (GPR) model, which infers the DSD and its uncertainty form the knowledge of its integrals and of its first moment, i.e., the mean drop diameter. Third, we deploy multiple GPR models to estimate these quantities at arbitrary points of the design space from data obtained from a large number of numerical simulations of a flat fan spray. The kernel used for reconstructing the DSD incorporates prior physical knowledge, which enables the prediction of sharply peaked and heavy-tailed distributions. Fourth, we compare our method with a benchmark approach, which estimates the DSD by interpolating the frequency polygon of the binned drops with a GPR. We show that our integral approach is significantly more accurate, especially in the tail of the distribution (i.e., large, rare drops), and it reduces the bias of the density estimator by up to 10 times. Finally, we discuss physical aspects of the model's predictions and interpret them against experimental results from the literature. This work opens opportunities for modeling drop size distribution in multiphase flows from data.

Data-driven modeling for drop size distributions / Traverso, T.; Abadie, T.; Matar, O. K.; Magri, L.. - In: PHYSICAL REVIEW FLUIDS. - ISSN 2469-990X. - 8:10(2023), pp. 1-21. [10.1103/PhysRevFluids.8.104302]

Data-driven modeling for drop size distributions

Magri L.
2023

Abstract

The prediction of the drop size distribution (DSD) resulting from liquid atomization is key to the optimization of multiphase flows from gas-turbine propulsion through agriculture to healthcare. Obtaining high-fidelity data of liquid atomization, either experimentally or numerically, is expensive, which makes the exploration of the design space difficult. First, to tackle these challenges, we propose a framework to predict the DSD of a liquid spray based on data as a function of the spray angle, the Reynolds number, and the Weber number. Second, to guide the design of liquid atomizers, the model accurately predicts the volume of fluid contained in drops of specific sizes while providing uncertainty estimation. To do so, we propose a Gaussian process regression (GPR) model, which infers the DSD and its uncertainty form the knowledge of its integrals and of its first moment, i.e., the mean drop diameter. Third, we deploy multiple GPR models to estimate these quantities at arbitrary points of the design space from data obtained from a large number of numerical simulations of a flat fan spray. The kernel used for reconstructing the DSD incorporates prior physical knowledge, which enables the prediction of sharply peaked and heavy-tailed distributions. Fourth, we compare our method with a benchmark approach, which estimates the DSD by interpolating the frequency polygon of the binned drops with a GPR. We show that our integral approach is significantly more accurate, especially in the tail of the distribution (i.e., large, rare drops), and it reduces the bias of the density estimator by up to 10 times. Finally, we discuss physical aspects of the model's predictions and interpret them against experimental results from the literature. This work opens opportunities for modeling drop size distribution in multiphase flows from data.
File in questo prodotto:
File Dimensione Formato  
PhysRevFluids.8.104302.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995077