Commuters' departure time related decisions are important in time geography. Analytic tools have been proposed to capture the inherent choice determinants both in time and space. Although the dynamic aspects of the problem have been identified, most of the existing studies are based on static models. In this paper, a dynamic modeling framework is proposed to explore the relationship between commuters' departure time choices and the evolution of en route traffic. A data linkage method is developed to create an integrated dataset that enables the observation of commuters' reaction to changes in travel time and traffic conditions over time. A regional household travel survey is linked to travel information obtained from the Google Maps application program interface (API), creating a synthetic longitudinal dataset. Two decision rules are applied to model commuters' response to the evolution of traffic. The results indicate that travel time, distance to work location, flexibility in working schedule, expected arrival time, and commuters' sociodemographic influence departure time choices. It is also found that accounting for dynamics improves model fit and out-of-sample predictions. Both the dynamic model and the proposed data linkage method contribute to the understanding of human activities in space and time and can be used to enhance transportation demand analysis and urban policy studies.
Space-time dynamics: A modeling approach for commuting departure time on linked datasets / Dong, H.; Cirillo, C.. - In: JOURNAL OF TRANSPORT GEOGRAPHY. - ISSN 0966-6923. - 82:(2020). [10.1016/j.jtrangeo.2019.102548]
Space-time dynamics: A modeling approach for commuting departure time on linked datasets
Cirillo C.
2020
Abstract
Commuters' departure time related decisions are important in time geography. Analytic tools have been proposed to capture the inherent choice determinants both in time and space. Although the dynamic aspects of the problem have been identified, most of the existing studies are based on static models. In this paper, a dynamic modeling framework is proposed to explore the relationship between commuters' departure time choices and the evolution of en route traffic. A data linkage method is developed to create an integrated dataset that enables the observation of commuters' reaction to changes in travel time and traffic conditions over time. A regional household travel survey is linked to travel information obtained from the Google Maps application program interface (API), creating a synthetic longitudinal dataset. Two decision rules are applied to model commuters' response to the evolution of traffic. The results indicate that travel time, distance to work location, flexibility in working schedule, expected arrival time, and commuters' sociodemographic influence departure time choices. It is also found that accounting for dynamics improves model fit and out-of-sample predictions. Both the dynamic model and the proposed data linkage method contribute to the understanding of human activities in space and time and can be used to enhance transportation demand analysis and urban policy studies.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994844
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo