The achievement of sustainable development goals requires implementing a design approach to the industrial product development aimed to reduce waste, and to increase value, in accordance to principles of the "circular economy." To mitigate the product obsolescence rate, the design activity aims at making the product multifunctional, its life longer and its maintainability more effective. Moreover, the product must be easily reparable, adaptable to operating conditions, friendly updatable, and reusable after decommissioning. Those targets affect the design methodology, and require some suitable tools. This article investigates how the "model-based systems engineering" is applied to the "circular design," to provide a sustainable product life, and to regenerate the system, while decommissioning. Particularly, the direct experience of machine designer of industrial product, being the result of material processing and manufacturing, is considered. Are matter of discussion the identification of some issues related to sustainability and decommissioning, the methodologic tools useful to integrate the two approaches, the impact on the metamodeling activity, and the interoperable tool chain exploited. An industrial test case, as the automated guided vehicle, is preliminarily discussed to describe the implementation of the above-mentioned concepts and to identify any potential critical issues.
A roadmap to the Integration Between Systems Engineering and Circular Design to Develop Sustainable Industrial Product / Brusa, Eugenio; Gastaldi, Chiara; Delprete, Cristiana; Giorio, Lorenzo. - In: IEEE SYSTEMS JOURNAL. - ISSN 1937-9234. - 18:3(2024), pp. 1693-1704. [10.1109/JSYST.2024.3435025]
A roadmap to the Integration Between Systems Engineering and Circular Design to Develop Sustainable Industrial Product
Eugenio Brusa;Chiara Gastaldi;Cristiana Delprete;Lorenzo Giorio
2024
Abstract
The achievement of sustainable development goals requires implementing a design approach to the industrial product development aimed to reduce waste, and to increase value, in accordance to principles of the "circular economy." To mitigate the product obsolescence rate, the design activity aims at making the product multifunctional, its life longer and its maintainability more effective. Moreover, the product must be easily reparable, adaptable to operating conditions, friendly updatable, and reusable after decommissioning. Those targets affect the design methodology, and require some suitable tools. This article investigates how the "model-based systems engineering" is applied to the "circular design," to provide a sustainable product life, and to regenerate the system, while decommissioning. Particularly, the direct experience of machine designer of industrial product, being the result of material processing and manufacturing, is considered. Are matter of discussion the identification of some issues related to sustainability and decommissioning, the methodologic tools useful to integrate the two approaches, the impact on the metamodeling activity, and the interoperable tool chain exploited. An industrial test case, as the automated guided vehicle, is preliminarily discussed to describe the implementation of the above-mentioned concepts and to identify any potential critical issues.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994522
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo