This work presents results of numerical simulations to investigate the effect of different void percentages on composite materials’ Coefficient of Thermal Expansion (CTE) and local stress fields. A random distribution of voids is considered within the Representative Volume Element (RVE) matrix, and different types of microstructures are considered, including square-packed and randomly distributed fibers. The use of a higher-order beam model within the framework of Carrera Unified Formulation (CUF) leads to a Component-Wise (CW) approach, resulting in an accurate, 3D description of the cross-section although using a 1D formulation. Numerical results for different fiber volume fractions and void concentration percentages demonstrate the agreement of the computed effective coefficients of thermal expansion of the present micromechanical thermoelastic model with references from the literature. The local stress fields are affected by voids, with higher effects over the matrix. Furthermore, higher void fractions lead to higher variability of stress peaks.
Thermomechanical analysis of carbon fiber-reinforced polymer representative volume elements with voids / Petrolo, M.; Pagani, A.; Trombini, M.; Masia, R.; Carrera, E.. - In: JOURNAL OF REINFORCED PLASTICS AND COMPOSITES. - ISSN 0731-6844. - ELETTRONICO. - 43:23-24(2024), pp. 1375-1392. [10.1177/07316844231206956]
Thermomechanical analysis of carbon fiber-reinforced polymer representative volume elements with voids
M. Petrolo;A. Pagani;M. Trombini;R. Masia;E. Carrera
2024
Abstract
This work presents results of numerical simulations to investigate the effect of different void percentages on composite materials’ Coefficient of Thermal Expansion (CTE) and local stress fields. A random distribution of voids is considered within the Representative Volume Element (RVE) matrix, and different types of microstructures are considered, including square-packed and randomly distributed fibers. The use of a higher-order beam model within the framework of Carrera Unified Formulation (CUF) leads to a Component-Wise (CW) approach, resulting in an accurate, 3D description of the cross-section although using a 1D formulation. Numerical results for different fiber volume fractions and void concentration percentages demonstrate the agreement of the computed effective coefficients of thermal expansion of the present micromechanical thermoelastic model with references from the literature. The local stress fields are affected by voids, with higher effects over the matrix. Furthermore, higher void fractions lead to higher variability of stress peaks.File | Dimensione | Formato | |
---|---|---|---|
PPMC_JRPC_2024.pdf
accesso riservato
Descrizione: Paper
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PPTMC_JRPC_2023_R2.pdf
accesso aperto
Descrizione: Paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994324