Modern technologies that can replace state-of-the-art Li-ion batteries (LIBs), such as Na-ion batteries (NIBs), are currently driving new advancements in energy storage research. Developing functional active materials having sustainable features and enhanced performances able to assess their exploitation in the large-scale market represents a major challenge. Rationally designed P2-type layered transition metal (TM) oxides can enable high-energy NIB cathodes, where the tailored composition directly tunes the electrochemical and structural properties. Such positive electrodes need stable electrolytes, and exploration of unconventional room-temperature ionic liquid (RTIL)-based formulations paves the route toward safer options to flammable organic solvents. Notwithstanding the fact that Li+ doping in these materials has been proposed as a viable strategy to improve structural issues, an in depth understanding of structure−property relationship as well as electrochemical testing with innovative RTIL-based electrolytes is still missing. Herein, we propose the solid-state synthesis of P2-Na0.84Li0.1Ni0.27Mn0.63O2 (NLNMO) cathode material, which exhibits promising structural reversibility and superior capacity retention upon cycling when tested in combination with RTIL-based electrolytes (EMI-, PYR14-, and N1114-FSI) compared to the standard NaClO4/PC. As unveiled from DFT calculations, lattice integrity is ensured by the reduced Jahn−Teller distortion upon Na removal exerted by Mn4+ and Li+ sublattices, while the good redox reversibility is mainly associated with the electrochemically active Ni2+/Ni3+/Ni4+ series burdening the charge compensation upon desodiation. By declaring the electrochemical compatibility of the P2-NLNMO cathode with three RTIL-based electrolytes and dissecting the role of Li/Ni/Mn sublattices in determining the electrochemical behavior, our comprehensive study enlightens the potential application of this electrode/electrolyte setup for future high-energy NIB prototype cells.
P2-Type Na0.84Li0.1Ni0.27Mn0.63O2‑Layered Oxide Na-Ion Battery Cathode: Structural Insights and Electrochemical Compatibility with Room-Temperature Ionic Liquids / Massaro, Arianna; Lingua, Gabriele; Bozza, Francesco; Piovano, Alessandro; Paolo Prosini, Pier; Muñoz-García, Ana B.; Pavone, Michele; Gerbaldi, Claudio. - In: CHEMISTRY OF MATERIALS. - ISSN 0897-4756. - STAMPA. - 36:14(2024), pp. 7046-7055. [10.1021/acs.chemmater.4c01311]
P2-Type Na0.84Li0.1Ni0.27Mn0.63O2‑Layered Oxide Na-Ion Battery Cathode: Structural Insights and Electrochemical Compatibility with Room-Temperature Ionic Liquids
Gabriele Lingua;Alessandro Piovano;Claudio Gerbaldi
2024
Abstract
Modern technologies that can replace state-of-the-art Li-ion batteries (LIBs), such as Na-ion batteries (NIBs), are currently driving new advancements in energy storage research. Developing functional active materials having sustainable features and enhanced performances able to assess their exploitation in the large-scale market represents a major challenge. Rationally designed P2-type layered transition metal (TM) oxides can enable high-energy NIB cathodes, where the tailored composition directly tunes the electrochemical and structural properties. Such positive electrodes need stable electrolytes, and exploration of unconventional room-temperature ionic liquid (RTIL)-based formulations paves the route toward safer options to flammable organic solvents. Notwithstanding the fact that Li+ doping in these materials has been proposed as a viable strategy to improve structural issues, an in depth understanding of structure−property relationship as well as electrochemical testing with innovative RTIL-based electrolytes is still missing. Herein, we propose the solid-state synthesis of P2-Na0.84Li0.1Ni0.27Mn0.63O2 (NLNMO) cathode material, which exhibits promising structural reversibility and superior capacity retention upon cycling when tested in combination with RTIL-based electrolytes (EMI-, PYR14-, and N1114-FSI) compared to the standard NaClO4/PC. As unveiled from DFT calculations, lattice integrity is ensured by the reduced Jahn−Teller distortion upon Na removal exerted by Mn4+ and Li+ sublattices, while the good redox reversibility is mainly associated with the electrochemically active Ni2+/Ni3+/Ni4+ series burdening the charge compensation upon desodiation. By declaring the electrochemical compatibility of the P2-NLNMO cathode with three RTIL-based electrolytes and dissecting the role of Li/Ni/Mn sublattices in determining the electrochemical behavior, our comprehensive study enlightens the potential application of this electrode/electrolyte setup for future high-energy NIB prototype cells.File | Dimensione | Formato | |
---|---|---|---|
A. Massaro et al. - Chem. Mater. 36 (2024) 7046.pdf
accesso aperto
Descrizione: Version of record - Open access
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.58 MB
Formato
Adobe PDF
|
4.58 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994282