Optical quality bioresorbable materials have been gaining interest in recent years for various interstitial biomedical/medical application. An example of this is when the implant gradually dissolves in the body, providing physiological information over extended periods of time, hence reducing the need for revision surgeries. This study reports for the first time the in-house fabrication of single mode (at 785 nm) calcium phosphate glass (CPG) based bioresorbable optical fibers and investigates their suitability for microvascular blood flow monitoring using diffuse correlation spectroscopy (DCS). Ex vivo experiments in liquid phantom and non-invasive in vivo experiments on the human forearm muscle were conducted using multimode and single mode CPG bioresorbable optical fibers. The retrieved flow index from the correlation curves acquired using CPG fibers was in good agreement with that obtained using standard silica (Si) fibers, both ex vivo and in vivo. The results demonstrate the potential of CPG optical fibers for further exploration.
Proof of concept validation of bioresorbable optical fibers for diffuse correlation spectroscopy / Talekkara Pandayil, Jawad; Boetti, Nadia G.; Janner, Davide; Durduran, Turgut; Cortese, Lorenzo. - In: BIOMEDICAL OPTICS EXPRESS. - ISSN 2156-7085. - 15:11(2024), pp. 6384-6398. [10.1364/boe.540137]
Proof of concept validation of bioresorbable optical fibers for diffuse correlation spectroscopy
Talekkara Pandayil, Jawad;Boetti, Nadia G.;Janner, Davide;
2024
Abstract
Optical quality bioresorbable materials have been gaining interest in recent years for various interstitial biomedical/medical application. An example of this is when the implant gradually dissolves in the body, providing physiological information over extended periods of time, hence reducing the need for revision surgeries. This study reports for the first time the in-house fabrication of single mode (at 785 nm) calcium phosphate glass (CPG) based bioresorbable optical fibers and investigates their suitability for microvascular blood flow monitoring using diffuse correlation spectroscopy (DCS). Ex vivo experiments in liquid phantom and non-invasive in vivo experiments on the human forearm muscle were conducted using multimode and single mode CPG bioresorbable optical fibers. The retrieved flow index from the correlation curves acquired using CPG fibers was in good agreement with that obtained using standard silica (Si) fibers, both ex vivo and in vivo. The results demonstrate the potential of CPG optical fibers for further exploration.File | Dimensione | Formato | |
---|---|---|---|
boe-15-11-6384.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2993498