We formulate integrable flows related to the Korteweg–De Vries (KdV) hier- archy on null curves in the anti-de Sitter 3-space (AdS). Exploiting the specific properties of the geometry of AdS, we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solu- tions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non- stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.

Integrable flows on null curves in the Anti-de Sitter 3-space / Musso, Emilio; Pámpano, Álvaro. - In: NONLINEARITY. - ISSN 0951-7715. - ELETTRONICO. - 37:11(2024), pp. 1-38. [10.1088/1361-6544/ad7d58]

Integrable flows on null curves in the Anti-de Sitter 3-space

Musso, Emilio;
2024

Abstract

We formulate integrable flows related to the Korteweg–De Vries (KdV) hier- archy on null curves in the anti-de Sitter 3-space (AdS). Exploiting the specific properties of the geometry of AdS, we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solu- tions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non- stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.
2024
File in questo prodotto:
File Dimensione Formato  
Musso_2024_Nonlinearity_37_115015.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
IntegrableFlowFinal-_compressed (2).pdf

embargo fino al 08/10/2025

Descrizione: IntegrableFlowsAdS
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 614.99 kB
Formato Adobe PDF
614.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993327