Here we present a technique for using machine learning (ML) for single-qubit gate synthesis on field programmable logic for a superconducting transmon-based quantum computer based on simulated studies. Our approach is multi-stage. We first “bootstrap” a model based on simulation with access to the full statevector for measuring gate fidelity. We next present an algorithm, named adapted randomized benchmarking (ARB), for fine-tuning the gate on hardware based on measurements of the devices. We also present techniques for deploying the model on programmable devices with care to reduce the required resources. While the techniques here are applied to a transmon-based computer, many of them are portable to other architectures.
Machine Learning for Arbitrary Single Qubit Rotations on an Embedded Device / Bhat, Madhav Narayan; Russo, Marco; Carloni, Luca; Di Guglielmo, Giuseppe; Fahim, Farah; Li, Andy C. Y.; Perdue, Gabriel N.. - In: QUANTUM MACHINE INTELLIGENCE. - ISSN 2524-4906. - 7:(2025). [10.1007/s42484-024-00214-8]
Machine Learning for Arbitrary Single Qubit Rotations on an Embedded Device
Russo,Marco;
2025
Abstract
Here we present a technique for using machine learning (ML) for single-qubit gate synthesis on field programmable logic for a superconducting transmon-based quantum computer based on simulated studies. Our approach is multi-stage. We first “bootstrap” a model based on simulation with access to the full statevector for measuring gate fidelity. We next present an algorithm, named adapted randomized benchmarking (ARB), for fine-tuning the gate on hardware based on measurements of the devices. We also present techniques for deploying the model on programmable devices with care to reduce the required resources. While the techniques here are applied to a transmon-based computer, many of them are portable to other architectures.File | Dimensione | Formato | |
---|---|---|---|
s42484-024-00214-8.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2993104