Railway traffic management requires a timely and accurate redefinition of routes and schedules in response to detected perturbations of the original timetable. To date, most of the (automated) solutions to this problem require a central authority to make decisions for all the trains in a given control area. An appealing alternative is to consider trains as intelligent agents able to self-organize and determine the best traffic management strategy. This could lead to more scalable and resilient approaches, that can also take into account the real-time mobility demand. In this paper, we formalize the concept of railway traffic self-organization and we present an original design that enables its real-world deployment. We detail the principles at the basis of the sub-processes brought forth by the trains in a decentralized way, explaining their sequence and interaction. Moreover, we propose a preliminary proof of concept based on a realistic setting representing traffic in a French control area. The results allow conjecturing that self-organizing railway traffic management may be a viable option, and foster further research in this direction.

Towards self-organizing railway traffic management: concept and framework / D'Amato, Leo; Naldini, Federico; Tibaldo, Valentina; Trianni, Vito; Pellegrini, Paola. - In: JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT. - ISSN 2210-9706. - 29:(2024). [10.1016/j.jrtpm.2023.100427]

Towards self-organizing railway traffic management: concept and framework

D'Amato, Leo;Pellegrini, Paola
2024

Abstract

Railway traffic management requires a timely and accurate redefinition of routes and schedules in response to detected perturbations of the original timetable. To date, most of the (automated) solutions to this problem require a central authority to make decisions for all the trains in a given control area. An appealing alternative is to consider trains as intelligent agents able to self-organize and determine the best traffic management strategy. This could lead to more scalable and resilient approaches, that can also take into account the real-time mobility demand. In this paper, we formalize the concept of railway traffic self-organization and we present an original design that enables its real-world deployment. We detail the principles at the basis of the sub-processes brought forth by the trains in a decentralized way, explaining their sequence and interaction. Moreover, we propose a preliminary proof of concept based on a realistic setting representing traffic in a French control area. The results allow conjecturing that self-organizing railway traffic management may be a viable option, and foster further research in this direction.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2210970623000598-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992668