Femur fractures are a significant worldwide public health concern that affects patients as well as their families because of their high frequency, morbidity, and mortality. When employing computer-aided diagnostic (CAD) technologies, promising results have been shown in the efficiency and accuracy of fracture classification, particularly with the growing use of Deep Learning (DL) approaches. Nevertheless, the complexity is further increased by the need to collect enough input data to train these algorithms and the challenge of interpreting the findings. By improving on the results of the most recent deep learning-based Arbeitsgemeinschaft für Osteosynthesefragen and Orthopaedic Trauma Association (AO/OTA) system classification of femur fractures, this study intends to support physicians in making correct and timely decisions regarding patient care. A state-of-the-art architecture, YOLOv8, was used and refined while paying close attention to the interpretability of the model. Furthermore, data augmentation techniques were involved during preprocessing, increasing the dataset samples through image processing alterations. The fine-tuned YOLOv8 model achieved remarkable results, with 0.9 accuracy, 0.85 precision, 0.85 recall, and 0.85 F1-score, computed by averaging the values among all the individual classes for each metric. This study shows the proposed architecture's effectiveness in enhancing the AO/OTA system's classification of femur fractures, assisting physicians in making prompt and accurate diagnoses.

Classification of AO/OTA 31A/B femur fractures in X-ray images using YOLOv8 and advanced data augmentation techniques / Marullo, Giorgia; Ulrich, Luca; Antonaci, FRANCESCA GIADA; Audisio, Andrea; Aprato, Alessandro; Massè, Alessandro; Vezzetti, Enrico. - In: BONE REPORTS. - ISSN 2352-1872. - 22:(2024). [10.1016/j.bonr.2024.101801]

Classification of AO/OTA 31A/B femur fractures in X-ray images using YOLOv8 and advanced data augmentation techniques

Giorgia Marullo;Luca Ulrich;Francesca Giada Antonaci;Enrico Vezzetti
2024

Abstract

Femur fractures are a significant worldwide public health concern that affects patients as well as their families because of their high frequency, morbidity, and mortality. When employing computer-aided diagnostic (CAD) technologies, promising results have been shown in the efficiency and accuracy of fracture classification, particularly with the growing use of Deep Learning (DL) approaches. Nevertheless, the complexity is further increased by the need to collect enough input data to train these algorithms and the challenge of interpreting the findings. By improving on the results of the most recent deep learning-based Arbeitsgemeinschaft für Osteosynthesefragen and Orthopaedic Trauma Association (AO/OTA) system classification of femur fractures, this study intends to support physicians in making correct and timely decisions regarding patient care. A state-of-the-art architecture, YOLOv8, was used and refined while paying close attention to the interpretability of the model. Furthermore, data augmentation techniques were involved during preprocessing, increasing the dataset samples through image processing alterations. The fine-tuned YOLOv8 model achieved remarkable results, with 0.9 accuracy, 0.85 precision, 0.85 recall, and 0.85 F1-score, computed by averaging the values among all the individual classes for each metric. This study shows the proposed architecture's effectiveness in enhancing the AO/OTA system's classification of femur fractures, assisting physicians in making prompt and accurate diagnoses.
2024
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352187224000688-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 6.2 MB
Formato Adobe PDF
6.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992583