In this paper we provide an optimal estimate for the operator norm of time-frequency localization operators L_F,φ : L^2(R^d) -> L^2(R^d), with Gaussian window φ and weight F, under the assumption that F is an element of L^p(R^2d) and L^q(R^2d) for some p and q in (1, ∞). We are also able to characterize optimal weight functions, whose shape turns out to depend on the ratio||F||_q/||F||_p. Roughly speaking, if this ratio is "sufficiently large" or "sufficiently small" optimal weight functions are certain Gaussians, while if it is in the intermediate regime the optimal functions are no longer Gaussians. As an application, we extend Lieb's uncertainty inequality to the space L^p + L^q.

A new optimal estimate for the norm of time-frequency localization operators / Riccardi, Federico. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 287:6(2024), pp. 1-23. [10.1016/j.jfa.2024.110523]

A new optimal estimate for the norm of time-frequency localization operators

Riccardi, Federico
2024

Abstract

In this paper we provide an optimal estimate for the operator norm of time-frequency localization operators L_F,φ : L^2(R^d) -> L^2(R^d), with Gaussian window φ and weight F, under the assumption that F is an element of L^p(R^2d) and L^q(R^2d) for some p and q in (1, ∞). We are also able to characterize optimal weight functions, whose shape turns out to depend on the ratio||F||_q/||F||_p. Roughly speaking, if this ratio is "sufficiently large" or "sufficiently small" optimal weight functions are certain Gaussians, while if it is in the intermediate regime the optimal functions are no longer Gaussians. As an application, we extend Lieb's uncertainty inequality to the space L^p + L^q.
File in questo prodotto:
File Dimensione Formato  
2311.06525v1.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 460.33 kB
Formato Adobe PDF
460.33 kB Adobe PDF Visualizza/Apri
riccardi_JFA.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 508.5 kB
Formato Adobe PDF
508.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992447