This paper presents the resistivity and piezoresistivity behavior of cement-based mortars manufactured with graphene nanoplatelet filler (GNP), virgin carbon fibers (VCF) and recycled carbon fibers (RCF). GNP was added at 4% of the cement weight, whereas two percentages of carbon fibers were chosen, namely 0.05% and 0.2% of the total volume. The combined effect of both filler and fibers was also investigated. Mortars were studied in terms of their mechanical properties (under flexure and compression) and electrical resistivity. Mortars with the lowest electrical resistivity values were also subjected to cyclic uniaxial compression to evaluate the variations in electrical resistivity as a function of strain. The results obtained show that mortars have piezoresistive behavior only if they are subjected to a prior drying process. In addition, dry specimens exhibit a high piezoresistivity only when loaded with 0.2 vol.% of VCF and 0.4 wt.% of GNP plus 0.2 vol.% RCF, with a quite reversible relation between their fractional change in resistivity (FCR) and compressive strain.

Evaluating the self-sensing ability of cement mortars manufactured with graphene nanoplatelets, virgin or recycled carbon fibers through piezoresistivity tests / Belli, A.; Mobili, A.; Bellezze, T.; Tittarelli, F.; Cachim, P.. - In: SUSTAINABILITY. - ISSN 2071-1050. - 10:11(2018), pp. 1-12. [10.3390/su10114013]

Evaluating the self-sensing ability of cement mortars manufactured with graphene nanoplatelets, virgin or recycled carbon fibers through piezoresistivity tests

Belli A.;
2018

Abstract

This paper presents the resistivity and piezoresistivity behavior of cement-based mortars manufactured with graphene nanoplatelet filler (GNP), virgin carbon fibers (VCF) and recycled carbon fibers (RCF). GNP was added at 4% of the cement weight, whereas two percentages of carbon fibers were chosen, namely 0.05% and 0.2% of the total volume. The combined effect of both filler and fibers was also investigated. Mortars were studied in terms of their mechanical properties (under flexure and compression) and electrical resistivity. Mortars with the lowest electrical resistivity values were also subjected to cyclic uniaxial compression to evaluate the variations in electrical resistivity as a function of strain. The results obtained show that mortars have piezoresistive behavior only if they are subjected to a prior drying process. In addition, dry specimens exhibit a high piezoresistivity only when loaded with 0.2 vol.% of VCF and 0.4 wt.% of GNP plus 0.2 vol.% RCF, with a quite reversible relation between their fractional change in resistivity (FCR) and compressive strain.
2018
File in questo prodotto:
File Dimensione Formato  
10_sustainability-10-04013.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992370