The present research integrates the concept of double-pass (DP) flows with high-temperature solar receivers to introduce an innovative design aimed at minimizing heat losses and optimizing performance. The new DP system was developed using a tubular absorber derived from billboard solar tower technology and operated with air as the heat transfer medium. Computational fluid dynamic models are developed based on an experimental campaign conducted at a solar furnace facility. The computational analyses indicated that employing the DP design instead of single-pass (SP) absorbers results in an average enhancement of energy and exergy efficiency by 35% and 225%, respectively, across all test conditions. However, this enhancement is accompanied by an average increase in pressure drop of ∼60%. The detailed exergy analysis also revealed the contribution of each term in the exergetic performance, identifying the exergy destruction between the sun and the absorber as the primary source, accounting for an average of ∼65% of the total inlet exergy for both SP and DP absorbers. Consequently, the DP presents itself as a promising alternative design for future solar tower configurations, offering improved Nu numbers up to ∼50% in air-based solar systems.

Energetic and Exergetic Analyses of a Double-Pass Tubular Absorber for Application in Solar Towers / Ebadi, Hossein; Cammi, Antonio; Savoldi, Laura. - In: JOURNAL OF SOLAR ENERGY ENGINEERING. - ISSN 0199-6231. - 146:5(2024). [10.1115/1.4066201]

Energetic and Exergetic Analyses of a Double-Pass Tubular Absorber for Application in Solar Towers

Ebadi, Hossein;Savoldi, Laura
2024

Abstract

The present research integrates the concept of double-pass (DP) flows with high-temperature solar receivers to introduce an innovative design aimed at minimizing heat losses and optimizing performance. The new DP system was developed using a tubular absorber derived from billboard solar tower technology and operated with air as the heat transfer medium. Computational fluid dynamic models are developed based on an experimental campaign conducted at a solar furnace facility. The computational analyses indicated that employing the DP design instead of single-pass (SP) absorbers results in an average enhancement of energy and exergy efficiency by 35% and 225%, respectively, across all test conditions. However, this enhancement is accompanied by an average increase in pressure drop of ∼60%. The detailed exergy analysis also revealed the contribution of each term in the exergetic performance, identifying the exergy destruction between the sun and the absorber as the primary source, accounting for an average of ∼65% of the total inlet exergy for both SP and DP absorbers. Consequently, the DP presents itself as a promising alternative design for future solar tower configurations, offering improved Nu numbers up to ∼50% in air-based solar systems.
File in questo prodotto:
File Dimensione Formato  
Energetic and Exergetic Analyses of a Double-Pass Tubular Absorber for Application in Solar Towers.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992281