BiOI is a promising photoelectrocatalyst for oxidation reactions. However, the limited photoelectrocatalytic (PEC) activity necessitates the development of new strategies to modify its surface chemistry and thus enhance functional properties. Herein, we present a simple method to increase photocurrent in a BiOI-based photoanode by exfoliating microspheres of the oxyhalide produced through hydrothermal synthesis. Following exfoliation in isopropanol, the resulting layered BiOI-based colloid contains a greater variety of species, including Bi2O2CO3, I3−, IO3−, Bi5+, and hydroxides, compared to the original BiOI. These additional species do not directly enhance the PEC oxygen evolution reaction (OER) performance. Instead, they are consumed or converted during PEC OER, resulting in more active sites on the photoelectrode and reduced resistance, which ultimately improves the water oxidation performance of the exfoliated BiOI. Over long-term chronoamperometry, the exfoliated BiOI demonstrates a photocurrent twice as high as that of the BiOI microspheres. Analysis of the species after PEC OER reveals that the combination of IO3−, Bi5+, and I3− species on the BiOI is beneficial for charge transfer, thus enhancing the intrinsic PEC properties of the BiOI. This study offers new insights into the role of surface chemistry in determining PEC performance, aiding the optimization of 2D materials-based photoelectrocatalysts.
Tuning Surface Chemistry in 2D Layered BiOI by Facile Liquid‐Phase Exfoliation for Enhanced Photoelectrocatalytic Oxygen Evolution / Wang, Mengjiao; Gallego, Jaime; Pozzati, Micaela; Gatti, Teresa. - In: SMALL STRUCTURES. - ISSN 2688-4062. - (2024). [10.1002/sstr.202400275]
Tuning Surface Chemistry in 2D Layered BiOI by Facile Liquid‐Phase Exfoliation for Enhanced Photoelectrocatalytic Oxygen Evolution
Wang, Mengjiao;Pozzati, Micaela;Gatti, Teresa
2024
Abstract
BiOI is a promising photoelectrocatalyst for oxidation reactions. However, the limited photoelectrocatalytic (PEC) activity necessitates the development of new strategies to modify its surface chemistry and thus enhance functional properties. Herein, we present a simple method to increase photocurrent in a BiOI-based photoanode by exfoliating microspheres of the oxyhalide produced through hydrothermal synthesis. Following exfoliation in isopropanol, the resulting layered BiOI-based colloid contains a greater variety of species, including Bi2O2CO3, I3−, IO3−, Bi5+, and hydroxides, compared to the original BiOI. These additional species do not directly enhance the PEC oxygen evolution reaction (OER) performance. Instead, they are consumed or converted during PEC OER, resulting in more active sites on the photoelectrode and reduced resistance, which ultimately improves the water oxidation performance of the exfoliated BiOI. Over long-term chronoamperometry, the exfoliated BiOI demonstrates a photocurrent twice as high as that of the BiOI microspheres. Analysis of the species after PEC OER reveals that the combination of IO3−, Bi5+, and I3− species on the BiOI is beneficial for charge transfer, thus enhancing the intrinsic PEC properties of the BiOI. This study offers new insights into the role of surface chemistry in determining PEC performance, aiding the optimization of 2D materials-based photoelectrocatalysts.File | Dimensione | Formato | |
---|---|---|---|
Revised+manuscript.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri |
Small Structures - 2024 - Wang - Tuning Surface Chemistry in 2D Layered BiOI by Facile Liquid‐Phase Exfoliation for.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992253