Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages ' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulatebased formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical -chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
A review on micro and nanoengineering in powder-based pulmonary drug delivery / Pasero, Lorena; Susa, Francesca; Limongi, Tania; Pisano, Roberto. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - 659:(2024). [10.1016/j.ijpharm.2024.124248]
A review on micro and nanoengineering in powder-based pulmonary drug delivery
Pasero, Lorena;Susa, Francesca;Limongi, Tania;Pisano, Roberto
2024
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages ' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulatebased formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical -chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.File | Dimensione | Formato | |
---|---|---|---|
a-2024_IJP_659_124248.pdf
accesso aperto
Descrizione: a-2024_IJP_659_124248
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992042