This paper presents the design and analysis of a metamaterial-based compact dual-band antenna for WBAN applications. The antenna is designed and fabricated on a 0.254 mm thick semi-flexible substrate, RT/Duroid (R) 5880, with a relative permittivity of 2.2 and a loss tangent of 0.0009. The total dimensions of the antenna are 0.26 lambda(o)x0.19 lambda(o)x0.002 lambda(o), where lambda(o) corresponds to the free space wavelength at 2.45 GHz. To enhance overall performance and isolate the antenna from adverse effects of the human body, it is backed by a 2x2 artificial magnetic conductor (AMC) plane. The total volume of the AMC integrated design is 0.55 lambda(o)x0.55 lambda(o)x0.002 lambda(o). The paper investigates the antenna's performance both with and without AMC integration, considering on- and off-body states, as well as various bending conditions in both E and H-planes. Results indicate that the AMC-integrated antenna gives improved measured gains of 6.61 dBi and 8.02 dBi, with bandwidths of 10.12% and 7.43% at 2.45 GHz and 5.80 GHz, respectively. Furthermore, the AMC integrated antenna reduces the specific absorption rate (SAR) to (>96%) and (>93%) at 2.45 GHz and 5.80 GHz, meeting FCC requirements for low SAR at both frequencies when placed in proximity to the human body. CST Microwave Studio (MWS) and Ansys High-Frequency Structure Simulation (HFSS), both full-wave simulation tools, are utilized to evaluate the antenna's performance and to characterize the AMC unit cell. The simulated and tested results are in mutual agreement. Due to its low profile, high gain, adequate bandwidth, low SAR values, and compact size, the AMC integrated antenna is considered suitable for WBAN applications.
Design and performance investigation of metamaterial-inspired dual band antenna for WBAN applications / Ali, Usman; Ullah, Sadiq; Basir, Abdul; Yan, Sen; Ren, Hongwei; Kamal, Babar; Matekovits, Ladislau. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 19:8(2024). [10.1371/journal.pone.0306737]
Design and performance investigation of metamaterial-inspired dual band antenna for WBAN applications
Matekovits, Ladislau
2024
Abstract
This paper presents the design and analysis of a metamaterial-based compact dual-band antenna for WBAN applications. The antenna is designed and fabricated on a 0.254 mm thick semi-flexible substrate, RT/Duroid (R) 5880, with a relative permittivity of 2.2 and a loss tangent of 0.0009. The total dimensions of the antenna are 0.26 lambda(o)x0.19 lambda(o)x0.002 lambda(o), where lambda(o) corresponds to the free space wavelength at 2.45 GHz. To enhance overall performance and isolate the antenna from adverse effects of the human body, it is backed by a 2x2 artificial magnetic conductor (AMC) plane. The total volume of the AMC integrated design is 0.55 lambda(o)x0.55 lambda(o)x0.002 lambda(o). The paper investigates the antenna's performance both with and without AMC integration, considering on- and off-body states, as well as various bending conditions in both E and H-planes. Results indicate that the AMC-integrated antenna gives improved measured gains of 6.61 dBi and 8.02 dBi, with bandwidths of 10.12% and 7.43% at 2.45 GHz and 5.80 GHz, respectively. Furthermore, the AMC integrated antenna reduces the specific absorption rate (SAR) to (>96%) and (>93%) at 2.45 GHz and 5.80 GHz, meeting FCC requirements for low SAR at both frequencies when placed in proximity to the human body. CST Microwave Studio (MWS) and Ansys High-Frequency Structure Simulation (HFSS), both full-wave simulation tools, are utilized to evaluate the antenna's performance and to characterize the AMC unit cell. The simulated and tested results are in mutual agreement. Due to its low profile, high gain, adequate bandwidth, low SAR values, and compact size, the AMC integrated antenna is considered suitable for WBAN applications.File | Dimensione | Formato | |
---|---|---|---|
AliUllahBasirKamalYanRenMatekovits_Design and Performance Investigation of Metamateria Inspired.pdf
accesso aperto
Descrizione: AliUllahBasirKamalYanRenMatekovits_Design and Performance Investigation of Metamateria Inspired
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
9.7 MB
Formato
Adobe PDF
|
9.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2991912