Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental advances that must be addressed before EW can be extensively adopted. These include identifying the most suitable environmental conditions, improving estimates of field dissolution rates and efficacy of CO2removal, and identifying alternative sources of silicate materials to meet future EW demands. We conclude with considerations on the necessity of integrated modeling-experimental approaches to better coordinate future field experiments and measurements of CO2removal, as well as on the importance of seamlessly coordinating EW with cropland and forest management.

Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering / Calabrese, Salvatore; Wild, B.; Bertagni, M. B.; Bourg, I. C.; White, C.; Aburto, F.; Cipolla, Giuseppe; Noto, L. V.; Porporato, Amilcare. - In: ENVIRONMENTAL SCIENCE & TECHNOLOGY. - ISSN 0013-936X. - 56:22(2022), pp. 15261-15272. [10.1021/acs.est.2c03163]

Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering

Calabrese Salvatore;Bertagni M. B.;Porporato Amilcare
2022

Abstract

Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental advances that must be addressed before EW can be extensively adopted. These include identifying the most suitable environmental conditions, improving estimates of field dissolution rates and efficacy of CO2removal, and identifying alternative sources of silicate materials to meet future EW demands. We conclude with considerations on the necessity of integrated modeling-experimental approaches to better coordinate future field experiments and measurements of CO2removal, as well as on the importance of seamlessly coordinating EW with cropland and forest management.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2991484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo