A kind of sponge-like ZnFe2O4/TiO2 composite was facilely synthesized by a solution combustion method. The physicochemical properties, including the crystalline phase, surface morphology, spectral response, photogenerated charge carriers' separation and transfer efficiency, were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N-2 adsorption/desorption isotherms, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy techniques and analyzed to interpret the relationship between the structure and photocatalytic activity. The sponge-like morphology promotes the adsorption of reaction species as well as functions as a good light harvesting structure for the enhancement of spectral utilization. The hetero-junction effectively inhibited the recombination of photogenerated charge carriers. With these synergistic effects, the degradation rate of methylene blue on ZnFe2O4/TiO2 was up to 93.2% under visible light irradiation and remained stable even after five consecutive reaction runs. Moreover, owing to the magnetic property, ZnFe2O4/TiO2 can be recycled easily. Additionally, a photocatalytic mechanism of ZnFe2O4/TiO2 was proposed. (C) 2014 Elsevier B. V. All rights reserved.
Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2 / Zhu, Xiaodi; Zhang, Fan; Wang, Mengjiao; Ding, Jianjun; Sun, Song; Bao, Jun; Gao, Chen. - In: APPLIED SURFACE SCIENCE. - ISSN 0169-4332. - 319:(2014), pp. 83-89. [10.1016/j.apsusc.2014.07.051]
Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2
Wang, Mengjiao;
2014
Abstract
A kind of sponge-like ZnFe2O4/TiO2 composite was facilely synthesized by a solution combustion method. The physicochemical properties, including the crystalline phase, surface morphology, spectral response, photogenerated charge carriers' separation and transfer efficiency, were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N-2 adsorption/desorption isotherms, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy techniques and analyzed to interpret the relationship between the structure and photocatalytic activity. The sponge-like morphology promotes the adsorption of reaction species as well as functions as a good light harvesting structure for the enhancement of spectral utilization. The hetero-junction effectively inhibited the recombination of photogenerated charge carriers. With these synergistic effects, the degradation rate of methylene blue on ZnFe2O4/TiO2 was up to 93.2% under visible light irradiation and remained stable even after five consecutive reaction runs. Moreover, owing to the magnetic property, ZnFe2O4/TiO2 can be recycled easily. Additionally, a photocatalytic mechanism of ZnFe2O4/TiO2 was proposed. (C) 2014 Elsevier B. V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Facile+synthesis.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
429.04 kB
Formato
Adobe PDF
|
429.04 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0169433214015797-main.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2991197