A function f : Z → Qn is a c-quasihomomorphism if the Hamming distance between f(x + y) and f(x) + f(y) is at most c for all x, y ∈ Z. We show that any c-quasihomomorphism has distance at most some constant C(c) to an actual group homomorphism; here C(c) depends only on c and not on n or f. This gives a positive answer to a special case of a question posed by Kazhdan and Ziegler.
Quasihomomorphisms from the integers into Hamming metrics / Draisma, J.; Eggermont, R. H.; Seynnaeve, T.; Tairi, N.; Ventura, E.. - In: ALGEBRAIC COMBINATORICS. - ISSN 2589-5486. - 7:3(2024), pp. 843-851. [10.5802/alco.348]
Quasihomomorphisms from the integers into Hamming metrics
Draisma J.;Ventura E.
2024
Abstract
A function f : Z → Qn is a c-quasihomomorphism if the Hamming distance between f(x + y) and f(x) + f(y) is at most c for all x, y ∈ Z. We show that any c-quasihomomorphism has distance at most some constant C(c) to an actual group homomorphism; here C(c) depends only on c and not on n or f. This gives a positive answer to a special case of a question posed by Kazhdan and Ziegler.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| ALCO_2024__7_3_843_0-2.pdf accesso aperto 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										881.66 kB
									 
										Formato
										Adobe PDF
									 | 881.66 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
			        	
	
		
		
			
			Utilizza questo identificativo per citare o creare un link a questo documento: 
			    https://hdl.handle.net/11583/2990983
			
		
	
	
	
			      	