A function f : Z → Qn is a c-quasihomomorphism if the Hamming distance between f(x + y) and f(x) + f(y) is at most c for all x, y ∈ Z. We show that any c-quasihomomorphism has distance at most some constant C(c) to an actual group homomorphism; here C(c) depends only on c and not on n or f. This gives a positive answer to a special case of a question posed by Kazhdan and Ziegler.
Quasihomomorphisms from the integers into Hamming metrics / Draisma, J.; Eggermont, R. H.; Seynnaeve, T.; Tairi, N.; Ventura, E.. - In: ALGEBRAIC COMBINATORICS. - ISSN 2589-5486. - 7:3(2024), pp. 843-851. [10.5802/alco.348]
Quasihomomorphisms from the integers into Hamming metrics
Draisma J.;Ventura E.
2024
Abstract
A function f : Z → Qn is a c-quasihomomorphism if the Hamming distance between f(x + y) and f(x) + f(y) is at most c for all x, y ∈ Z. We show that any c-quasihomomorphism has distance at most some constant C(c) to an actual group homomorphism; here C(c) depends only on c and not on n or f. This gives a positive answer to a special case of a question posed by Kazhdan and Ziegler.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ALCO_2024__7_3_843_0-2.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
881.66 kB
Formato
Adobe PDF
|
881.66 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2990983