There are concerns about the potential toxicity of bitumen and recycled materials such as reclaimed asphalt pavements from end-of-life roads and crumb rubber from scrap tires used in asphalt mixtures because they contain metals that may be released into the groundwater. This study investigated the potential metal leaching of laboratory-prepared asphalt mixtures modified with polymer coated rubber (PCR) with wet and dry technology, devulcanized rubber (DVR), compared to an unmodified control mixture and a blend modified with a synthetic polymer (SBS). The objectives were to i) quantify concentrations of metals released, ii) calculate the flux rate, the cumulative mass release, and the assessment ratio for each metal, iii) verify if the metals exceeded the EPA drinking water limit, and, finally, iv) assess the source of metals release. Zinc had the highest concentration among all metals and was present in eluates from all mixtures. The cumulative zinc concentration from DVR mixture was 41% and 34% higher than the control and SBS mixtures, respectively. For PCR wet, the cumulative zinc concentration was 9% higher than the control blend and 1% lower than the SBS mix. The assessment ratio indicated that all metal concentrations would not exceed the drinking water limit, except for zinc, for which further evaluations were required. The main source of zinc may derive from aggregates. This work showed that crumb rubber might not be the only source of metal leaching, and its use in asphalt pavements does not cause a metal leaching higher than other materials.

Leaching behavior of metals from asphalt mixtures modified with crumb rubber from scrap tires / Farina, A.; Ruffino, B.; Kutay, E.; Anctil, A.. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - ELETTRONICO. - 179:(2024), pp. 44-54. [10.1016/j.wasman.2024.03.003]

Leaching behavior of metals from asphalt mixtures modified with crumb rubber from scrap tires

Ruffino B.;
2024

Abstract

There are concerns about the potential toxicity of bitumen and recycled materials such as reclaimed asphalt pavements from end-of-life roads and crumb rubber from scrap tires used in asphalt mixtures because they contain metals that may be released into the groundwater. This study investigated the potential metal leaching of laboratory-prepared asphalt mixtures modified with polymer coated rubber (PCR) with wet and dry technology, devulcanized rubber (DVR), compared to an unmodified control mixture and a blend modified with a synthetic polymer (SBS). The objectives were to i) quantify concentrations of metals released, ii) calculate the flux rate, the cumulative mass release, and the assessment ratio for each metal, iii) verify if the metals exceeded the EPA drinking water limit, and, finally, iv) assess the source of metals release. Zinc had the highest concentration among all metals and was present in eluates from all mixtures. The cumulative zinc concentration from DVR mixture was 41% and 34% higher than the control and SBS mixtures, respectively. For PCR wet, the cumulative zinc concentration was 9% higher than the control blend and 1% lower than the SBS mix. The assessment ratio indicated that all metal concentrations would not exceed the drinking water limit, except for zinc, for which further evaluations were required. The main source of zinc may derive from aggregates. This work showed that crumb rubber might not be the only source of metal leaching, and its use in asphalt pavements does not cause a metal leaching higher than other materials.
File in questo prodotto:
File Dimensione Formato  
WM-23-2799_R1_PRE.pdf

embargo fino al 06/03/2025

Descrizione: manuscript
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0956053X24001442-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.6 MB
Formato Adobe PDF
5.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990965