Carbon fibres were synthesized by using cotton-based post-consumer textile waste as precursor in an inert environment of nitrogen at three different temperatures of 400 degrees C, 500 degrees C and 600 degrees C at a heating rate of 5 degrees C/ min. Synthesized carbon fibres were subjected to various analysis such as surface morphology, structural properties and chemical nature using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and X-rays photoelectron spectroscopy respectively. Obtained carbon fibres revealed high carbon content and good structural properties especially at 600 degrees C synthesis temperature. The carbon fibres were employed in epoxy composites in five different weight ratios to enhance tensile properties. Maximum strength was exhibited by carbon fibres synthesized at 600 degrees C i.e., 56.77 % by addition of 1 % filler and an increment of 93 % in ultimate tensile strength was recorded at 4 % filler weight when compared to neat epoxy. 400 degrees C carbon fibres-based composites exhibited minimum strength among all composites on comparative basis ranging from 29 % to 63 % at 1 % to 5 % concentrations of filler respectively. While the 500 degrees C carbon fibres-based composites exhibited tensile properties in-between the 400 degrees C and 600 degrees C carbon fibres-based composites. Similar trends were seen in the young modulus, resilience, and tensile toughness analysis.
Low temperature synthesis of carbon fibres from post-consumer textile waste and their application to composites: An ecofriendly approach / Khan, A.; Iftikhar, K.; Mohsin, M.; Ahmad, J.; Sahar, N.; Rovere, M.; Tagliaferro, A.. - In: DIAMOND AND RELATED MATERIALS. - ISSN 0925-9635. - 130:(2022), pp. 1-11. [10.1016/j.diamond.2022.109504]
Low temperature synthesis of carbon fibres from post-consumer textile waste and their application to composites: An ecofriendly approach
Khan A.;Mohsin M.;Ahmad J.;Rovere M.;Tagliaferro A.
2022
Abstract
Carbon fibres were synthesized by using cotton-based post-consumer textile waste as precursor in an inert environment of nitrogen at three different temperatures of 400 degrees C, 500 degrees C and 600 degrees C at a heating rate of 5 degrees C/ min. Synthesized carbon fibres were subjected to various analysis such as surface morphology, structural properties and chemical nature using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and X-rays photoelectron spectroscopy respectively. Obtained carbon fibres revealed high carbon content and good structural properties especially at 600 degrees C synthesis temperature. The carbon fibres were employed in epoxy composites in five different weight ratios to enhance tensile properties. Maximum strength was exhibited by carbon fibres synthesized at 600 degrees C i.e., 56.77 % by addition of 1 % filler and an increment of 93 % in ultimate tensile strength was recorded at 4 % filler weight when compared to neat epoxy. 400 degrees C carbon fibres-based composites exhibited minimum strength among all composites on comparative basis ranging from 29 % to 63 % at 1 % to 5 % concentrations of filler respectively. While the 500 degrees C carbon fibres-based composites exhibited tensile properties in-between the 400 degrees C and 600 degrees C carbon fibres-based composites. Similar trends were seen in the young modulus, resilience, and tensile toughness analysis.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0925963522006860-main.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.71 MB
Formato
Adobe PDF
|
2.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2990690