Carbon dots (CDs) from glucose were synthesized using two of the most common bottom-up methods, namely, microwave assisted (MW) and hydrothermal carbonization (HT). Synthetic parameters such as reaction time, temperature, and precursor concentration were changed to study the effects of each parameter on CD size, structure, surface functionalities, charge, photoluminescence behavior, quantum yield, cytotoxicity, blood-brain barrier (BBB) crossing ability and bioimaging. A detailed analysis is per-formed to compare the structure and properties of the CDs synthesized in ten different conditions. We show that the synthesis route drastically changes the structure, properties, and related functions of glucose-derived CDs yielding two different subtypes of CDs. Surprisingly, CDs that was synthesized via HT method showed specific anticancer activity against a neuroblastoma cell line while being non-toxic towards healthy cell lines, indicating significant potential for therapeutic applications. CDs synthesized via MW crosses the BBB in zebrafish and rat models, and accumulates in neurons. CDs synthesized via MW method showed high biocompatibility and a great potential to be used for bioimaging applications in vitro and in vivo targeting neurons. Finally, a formation mechanism of CDs is proposed for both HT and MW synthesis routes. (C) 2022 Elsevier Inc. All rights reserved.

Hydrothermal vs microwave nanoarchitechtonics of carbon dots significantly affects the structure, physicochemical properties, and anti-cancer activity against a specific neuroblastoma cell line / Seven, E. S.; Kirbas Cilingir, E.; Bartoli, M.; Zhou, Y.; Sampson, R.; Shi, W.; Peng, Z.; Ram Pandey, R.; Chusuei, C. C.; Tagliaferro, A.; Vanni, S.; Graham, R. M.; Seven, Y. B.; Leblanc, R. M.. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 1095-7103. - 630 part A:(2023), pp. 306-321. [10.1016/j.jcis.2022.10.010]

Hydrothermal vs microwave nanoarchitechtonics of carbon dots significantly affects the structure, physicochemical properties, and anti-cancer activity against a specific neuroblastoma cell line

Bartoli M.;Peng Z.;Tagliaferro A.;
2023

Abstract

Carbon dots (CDs) from glucose were synthesized using two of the most common bottom-up methods, namely, microwave assisted (MW) and hydrothermal carbonization (HT). Synthetic parameters such as reaction time, temperature, and precursor concentration were changed to study the effects of each parameter on CD size, structure, surface functionalities, charge, photoluminescence behavior, quantum yield, cytotoxicity, blood-brain barrier (BBB) crossing ability and bioimaging. A detailed analysis is per-formed to compare the structure and properties of the CDs synthesized in ten different conditions. We show that the synthesis route drastically changes the structure, properties, and related functions of glucose-derived CDs yielding two different subtypes of CDs. Surprisingly, CDs that was synthesized via HT method showed specific anticancer activity against a neuroblastoma cell line while being non-toxic towards healthy cell lines, indicating significant potential for therapeutic applications. CDs synthesized via MW crosses the BBB in zebrafish and rat models, and accumulates in neurons. CDs synthesized via MW method showed high biocompatibility and a great potential to be used for bioimaging applications in vitro and in vivo targeting neurons. Finally, a formation mechanism of CDs is proposed for both HT and MW synthesis routes. (C) 2022 Elsevier Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021979722017556-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990687