We perform interface-resolved simulations to study the modulation of statistically steady-state homogeneous shear turbulence by neutrally buoyant finite-size particles. We consider two shapes, spheres and oblates, and various solid volume fractions, up to 20 %. The results show that a statistically steady state is not exclusive to single-phase homogeneous shear turbulence as the production and dissipation rates of the turbulent kinetic energy are also statistically in balance in particle-laden cases. The turbulent kinetic energy shows a non-monotonic behaviour with increasing solid volume fraction: increasing turbulence attenuation up to a certain concentration of solid particles and then enhancement of the turbulent kinetic energy at higher concentrations. This behaviour is observed at lower volume fractions for oblate particles than for spheres. The attenuation of the turbulence activity at lower volume fractions is explained through the enhancement of the dissipation rate close to the surface of particles. At higher volume fractions, however, particle pair interactions induce regions of high Reynolds shear stress, resulting in the enhancement of the turbulence activity. We show that the oblate particles of the considered size have larger rotational rates than spheres with no preferential orientation. This is in contrast to previous studies in wall-bounded flows where preferential orientation close to the wall and reduced rotation rates result in turbulence attenuation and thus drag reduction. Our results shed some light on the effect of rigid particles, smaller than the near-wall turbulent structures but still comparable to the viscous length scale, on the dynamics of the equilibrium logarithmic layer in wall-bounded flows.
Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear turbulence / Yousefi, Ali; Niazi Ardekani, Mehdi; Brandt, Luca. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 899:(2020). [10.1017/jfm.2020.457]
Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear turbulence
Yousefi, Ali;Brandt, Luca
2020
Abstract
We perform interface-resolved simulations to study the modulation of statistically steady-state homogeneous shear turbulence by neutrally buoyant finite-size particles. We consider two shapes, spheres and oblates, and various solid volume fractions, up to 20 %. The results show that a statistically steady state is not exclusive to single-phase homogeneous shear turbulence as the production and dissipation rates of the turbulent kinetic energy are also statistically in balance in particle-laden cases. The turbulent kinetic energy shows a non-monotonic behaviour with increasing solid volume fraction: increasing turbulence attenuation up to a certain concentration of solid particles and then enhancement of the turbulent kinetic energy at higher concentrations. This behaviour is observed at lower volume fractions for oblate particles than for spheres. The attenuation of the turbulence activity at lower volume fractions is explained through the enhancement of the dissipation rate close to the surface of particles. At higher volume fractions, however, particle pair interactions induce regions of high Reynolds shear stress, resulting in the enhancement of the turbulence activity. We show that the oblate particles of the considered size have larger rotational rates than spheres with no preferential orientation. This is in contrast to previous studies in wall-bounded flows where preferential orientation close to the wall and reduced rotation rates result in turbulence attenuation and thus drag reduction. Our results shed some light on the effect of rigid particles, smaller than the near-wall turbulent structures but still comparable to the viscous length scale, on the dynamics of the equilibrium logarithmic layer in wall-bounded flows.File | Dimensione | Formato | |
---|---|---|---|
modulation-of-turbulence-by-finite-size-particles-in-statistically-steady-state-homogeneous-shear-turbulence.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2990602