We use interface-resolved simulations to study near-wall turbulence modulation by small inertial particles, much denser than the fluid, in dilute/semi-dilute conditions. We considered three bulk solid mass fractions, , and , with only the latter two showing turbulence modulation. The increase of the drag is strong at , but mild in the densest case. Two distinct regimes of turbulence modulation emerge: for smaller mass fractions, the turbulence statistics are weakly affected and the near-wall particle accumulation increases the drag so the flow appears as a single-phase flow at slightly higher Reynolds number. Conversely, at higher mass fractions, the particles modulate the turbulent dynamics over the entire flow, and the interphase coupling becomes more complex. In this case, fluid Reynolds stresses are attenuated, but the inertial particle dynamics near the wall increases the drag via correlated velocity fluctuations, leading to an overall drag increase. Hence, we conclude that, although particles at high mass fractions reduce the fluid turbulent drag, the solid phase inertial dynamics still increases the overall drag. However, inspection of the streamwise momentum budget in the two-way coupling limit of vanishing volume fraction, but finite mass fraction, indicates that this trend could reverse at even higher particle load.
Near-wall turbulence modulation by small inertial particles / Costa, Pedro; Brandt, Luca; Picano, Francesco. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 922:(2021). [10.1017/jfm.2021.507]
Near-wall turbulence modulation by small inertial particles
Brandt, Luca;
2021
Abstract
We use interface-resolved simulations to study near-wall turbulence modulation by small inertial particles, much denser than the fluid, in dilute/semi-dilute conditions. We considered three bulk solid mass fractions, , and , with only the latter two showing turbulence modulation. The increase of the drag is strong at , but mild in the densest case. Two distinct regimes of turbulence modulation emerge: for smaller mass fractions, the turbulence statistics are weakly affected and the near-wall particle accumulation increases the drag so the flow appears as a single-phase flow at slightly higher Reynolds number. Conversely, at higher mass fractions, the particles modulate the turbulent dynamics over the entire flow, and the interphase coupling becomes more complex. In this case, fluid Reynolds stresses are attenuated, but the inertial particle dynamics near the wall increases the drag via correlated velocity fluctuations, leading to an overall drag increase. Hence, we conclude that, although particles at high mass fractions reduce the fluid turbulent drag, the solid phase inertial dynamics still increases the overall drag. However, inspection of the streamwise momentum budget in the two-way coupling limit of vanishing volume fraction, but finite mass fraction, indicates that this trend could reverse at even higher particle load.File | Dimensione | Formato | |
---|---|---|---|
near-wall-turbulence-modulation-by-small-inertial-particles-hi-res.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2102.11597v6.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
12.7 MB
Formato
Adobe PDF
|
12.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2990480