We investigate the effects of hydrodynamic interactions between microorganisms swimming at low Reynolds numbers, treating them as a control system. We employ Lie brackets analysis to examine the motion of two neighboring three-link swimmers interacting through the ambient fluid in which they propel themselves. Our analysis reveals that the hydrodynamic interaction has a dual consequence: on one hand, it diminishes the system's efficiency; on the other hand, it dictates that the two microswimmers must synchronize their motions to attain peak performance. Our findings are further corroborated by numerical simulations of the governing equations of motion.
Purcell’s swimmers in pairs / Attanasi, R.; Zoppello, M.; Napoli, G.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. - 109:2(2024), pp. 1-14. [10.1103/PhysRevE.109.024601]
Purcell’s swimmers in pairs
Zoppello M.;
2024
Abstract
We investigate the effects of hydrodynamic interactions between microorganisms swimming at low Reynolds numbers, treating them as a control system. We employ Lie brackets analysis to examine the motion of two neighboring three-link swimmers interacting through the ambient fluid in which they propel themselves. Our analysis reveals that the hydrodynamic interaction has a dual consequence: on one hand, it diminishes the system's efficiency; on the other hand, it dictates that the two microswimmers must synchronize their motions to attain peak performance. Our findings are further corroborated by numerical simulations of the governing equations of motion.File | Dimensione | Formato | |
---|---|---|---|
Purcell_swimmer_in_pairs_def.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
838.99 kB
Formato
Adobe PDF
|
838.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2990471