A numerical scheme to simulate three-phase fluid flows with phase change is proposed. By combining the Cahn-Hilliard model for water-air interface, Allen-Cahn equation for ice and fluid and Navier-Stokes equation for momentum, we solve the evolution of the water-air interface and water-ice interface simultaneously, including the volume expansion associated with solidification and due to the density difference between water and ice. Unlike existing schemes assuming a divergence-free flow field, the proposed continuous formulation allows for density changes while ensuring mass conservation. A Poisson equation for the pressure field is derived from mass conservation with constant coefficients, which can efficiently be solved without any pre-conditioning. The results demonstrate that the volume expansion during the ice formation and the subsequent motion of the water-air interface are successfully captured. A parametric study is carried out to examine the dependence of the icing on different physical and numerical parameters. Computations with flow disturbance of different amplitudes demonstrate the robustness of the computational scheme and the uniqueness of the solution over the parameters considered.
A phase-field method for three-phase flows with icing / Zhang, Wenqiang; Shahmardi, Armin; Choi, Kwing-so; Tammisola, Outi; Brandt, Luca; Mao, Xuerui. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 458:(2022). [10.1016/j.jcp.2022.111104]
A phase-field method for three-phase flows with icing
Brandt, Luca;
2022
Abstract
A numerical scheme to simulate three-phase fluid flows with phase change is proposed. By combining the Cahn-Hilliard model for water-air interface, Allen-Cahn equation for ice and fluid and Navier-Stokes equation for momentum, we solve the evolution of the water-air interface and water-ice interface simultaneously, including the volume expansion associated with solidification and due to the density difference between water and ice. Unlike existing schemes assuming a divergence-free flow field, the proposed continuous formulation allows for density changes while ensuring mass conservation. A Poisson equation for the pressure field is derived from mass conservation with constant coefficients, which can efficiently be solved without any pre-conditioning. The results demonstrate that the volume expansion during the ice formation and the subsequent motion of the water-air interface are successfully captured. A parametric study is carried out to examine the dependence of the icing on different physical and numerical parameters. Computations with flow disturbance of different amplitudes demonstrate the robustness of the computational scheme and the uniqueness of the solution over the parameters considered.File | Dimensione | Formato | |
---|---|---|---|
JCP_revised.pdf
Open Access dal 04/03/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
749.95 kB
Formato
Adobe PDF
|
749.95 kB | Adobe PDF | Visualizza/Apri |
phase-field-3fase.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
999.49 kB
Formato
Adobe PDF
|
999.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2990452