The intricate nature of non-Newtonian fluid rheology has raised notable attention, particularly in gas–liquid systems, where the dispersed bubbles may generate shear forces and change the shear-dependent viscosity of the surrounding liquid. While the effective shear rate is commonly used to approximate the shearthinning viscosity around spherical bubbles, deviations may arise for deformed bubbles present in real systems. This work combines laboratory experiments and numerical simulations to investigate the evolution of a single rising bubble in three different systems: water, glycerol/water solutions characterizing viscous-Newtonian systems, and carboxymethyl cellulose (CMC) aqueous solutions exhibiting shear-thinning. The experiment was performed with bubble sizes of 1–9 mm using imaging techniques. The measured fluid rheology is modeled by the Carreau model, and used in 3D direct numerical simulations based on a diffuse interface approach. The shear-thinning behaviors are found to increase the bubble terminal velocity through two distinct mechanisms: reducing the apparent viscosity around the bubble and promoting the bubble deformation. The extent of the shear-thinning effect depends on the three dominating regimes under which different rheology parameters play a significant role. Finally, empirical models for bubble terminal velocity and drag coefficient are evaluated using two shear-thinning viscosity estimations, based on the effective shear rate and the average shear-thinning viscosity near the bubble interface. The good agreement between experimental and simulation results validates the proposed models.

Dynamics of a single bubble in Newtonian and non-Newtonian fluids: Experimental and simulation approaches / Hosen, Hauna Fathmadinda; Shahmardi, Armin; Brandt, Luca; Solsvik, Jannike. - In: INTERNATIONAL JOURNAL OF MULTIPHASE FLOW. - ISSN 0301-9322. - 174:(2024). [10.1016/j.ijmultiphaseflow.2024.104789]

Dynamics of a single bubble in Newtonian and non-Newtonian fluids: Experimental and simulation approaches

Brandt, Luca;
2024

Abstract

The intricate nature of non-Newtonian fluid rheology has raised notable attention, particularly in gas–liquid systems, where the dispersed bubbles may generate shear forces and change the shear-dependent viscosity of the surrounding liquid. While the effective shear rate is commonly used to approximate the shearthinning viscosity around spherical bubbles, deviations may arise for deformed bubbles present in real systems. This work combines laboratory experiments and numerical simulations to investigate the evolution of a single rising bubble in three different systems: water, glycerol/water solutions characterizing viscous-Newtonian systems, and carboxymethyl cellulose (CMC) aqueous solutions exhibiting shear-thinning. The experiment was performed with bubble sizes of 1–9 mm using imaging techniques. The measured fluid rheology is modeled by the Carreau model, and used in 3D direct numerical simulations based on a diffuse interface approach. The shear-thinning behaviors are found to increase the bubble terminal velocity through two distinct mechanisms: reducing the apparent viscosity around the bubble and promoting the bubble deformation. The extent of the shear-thinning effect depends on the three dominating regimes under which different rheology parameters play a significant role. Finally, empirical models for bubble terminal velocity and drag coefficient are evaluated using two shear-thinning viscosity estimations, based on the effective shear rate and the average shear-thinning viscosity near the bubble interface. The good agreement between experimental and simulation results validates the proposed models.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0301932224000697-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.95 MB
Formato Adobe PDF
7.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990394