Integration between constrained optimization and deep networks has garnered significant interest from both research and industrial laboratories. Optimization techniques can be employed to optimize the choice of network structure based not only on loss and accuracy but also on physical constraints. Additionally, constraints can be imposed during training to enhance the performance of networks in specific contexts. This study surveys the literature on the integration of constrained optimization with deep networks. Specifically, we examine the integration of hyper-parameter tuning with physical constraints, such as the number of FLOPS (FLoating point Operations Per Second), a measure of computational capacity, latency, and other factors. This study also considers the use of context-specific knowledge constraints to improve network performance. We discuss the integration of constraints in neural architecture search (NAS), considering the problem as both a multi-objective optimization (MOO) challenge and through the imposition of penalties in the loss function. Furthermore, we explore various approaches that integrate logic with deep neural networks (DNNs). In particular, we examine logic-neural integration through constrained optimization applied during the training of NNs and the use of semantic loss, which employs the probabilistic output of the networks to enforce constraints on the output.

Integration between constrained optimization and deep networks: a survey / Bizzarri, Alice; Fraccaroli, Michele; Lamma, Evelina; Riguzzi, Fabrizio. - In: FRONTIERS IN ARTIFICIAL INTELLIGENCE. - ISSN 2624-8212. - 7:(2024). [10.3389/frai.2024.1414707]

Integration between constrained optimization and deep networks: a survey

Bizzarri, Alice;
2024

Abstract

Integration between constrained optimization and deep networks has garnered significant interest from both research and industrial laboratories. Optimization techniques can be employed to optimize the choice of network structure based not only on loss and accuracy but also on physical constraints. Additionally, constraints can be imposed during training to enhance the performance of networks in specific contexts. This study surveys the literature on the integration of constrained optimization with deep networks. Specifically, we examine the integration of hyper-parameter tuning with physical constraints, such as the number of FLOPS (FLoating point Operations Per Second), a measure of computational capacity, latency, and other factors. This study also considers the use of context-specific knowledge constraints to improve network performance. We discuss the integration of constraints in neural architecture search (NAS), considering the problem as both a multi-objective optimization (MOO) challenge and through the imposition of penalties in the loss function. Furthermore, we explore various approaches that integrate logic with deep neural networks (DNNs). In particular, we examine logic-neural integration through constrained optimization applied during the training of NNs and the use of semantic loss, which employs the probabilistic output of the networks to enforce constraints on the output.
File in questo prodotto:
File Dimensione Formato  
frai-07-1414707.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 553.51 kB
Formato Adobe PDF
553.51 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990323