Synthetic Aperture Radar (SAR) satellite systems may give important contribution in terms of Digital Surface Models (DSMs) generation considering their complete independence from logistic constraints on the ground and weather conditions. In recent years, the new availability of very high resolution SAR data (up to 20 cm Ground Sample Distance) gave a new impulse to radargrammetry and allowed new applications and developments. Besides, to date, among the software aimed to radargrammetric applications only few show as free and open source. It is in this context that it has been decided to widen DATE (Digital Automatic Terrain Extractor) plug-in capabilities and additionally include the possibility to use SAR imagery for DSM stereo reconstruction (i.e. radargrammetry), besides to the optical workflow already developed. DATE is a Free and Open Source Software (FOSS) developed at the Geodesy and Geomatics Division, University of Rome "La Sapienza", and conceived as an OSSIM (Open Source Software Image Map) plug-in. It has been developed starting from May 2014 in the framework of 2014 Google Summer of Code, having as early purpose a fully automatic DSMs generation from high resolution optical satellite imagery acquired by the most common sensors. Here, the results achieved through this new capability applied to two stacks (one ascending and one descending) of three TerraSAR-X images each, acquired over Trento (Northern Italy) testfield, are presented. Global accuracies achieved are around 6 metres. These first results are promising and further analysis are expected for a more complete assessment of DATE application to SAR imagery.

Upgrade of foss date plug-in: Implementation of a new radargrammetric DSM generation capability / Di Rita, M.; Nascetti, A.; Fratarcangeli, F.; Crespi, M.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 1682-1750. - 41:(2016), pp. 821-825. [10.5194/isprsarchives-XLI-B7-821-2016]

Upgrade of foss date plug-in: Implementation of a new radargrammetric DSM generation capability

Di Rita M.;Crespi M.
2016

Abstract

Synthetic Aperture Radar (SAR) satellite systems may give important contribution in terms of Digital Surface Models (DSMs) generation considering their complete independence from logistic constraints on the ground and weather conditions. In recent years, the new availability of very high resolution SAR data (up to 20 cm Ground Sample Distance) gave a new impulse to radargrammetry and allowed new applications and developments. Besides, to date, among the software aimed to radargrammetric applications only few show as free and open source. It is in this context that it has been decided to widen DATE (Digital Automatic Terrain Extractor) plug-in capabilities and additionally include the possibility to use SAR imagery for DSM stereo reconstruction (i.e. radargrammetry), besides to the optical workflow already developed. DATE is a Free and Open Source Software (FOSS) developed at the Geodesy and Geomatics Division, University of Rome "La Sapienza", and conceived as an OSSIM (Open Source Software Image Map) plug-in. It has been developed starting from May 2014 in the framework of 2014 Google Summer of Code, having as early purpose a fully automatic DSMs generation from high resolution optical satellite imagery acquired by the most common sensors. Here, the results achieved through this new capability applied to two stacks (one ascending and one descending) of three TerraSAR-X images each, acquired over Trento (Northern Italy) testfield, are presented. Global accuracies achieved are around 6 metres. These first results are promising and further analysis are expected for a more complete assessment of DATE application to SAR imagery.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990315
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo