The study of nanoparticle motion has fundamental relevance in a wide range of nanotechnology-based fields. Molecular dynamics simulations offer a powerful tool to elucidate the dynamics of complex systems and derive theoretical models that facilitate the invention and optimization of novel devices. This research contributes to this ongoing effort by investigating the motion of one-end capped carbon nanotubes within an aqueous environment through extensive molecular dynamics simulations. By exposing the carbon nanotubes to localized heating, propelled motion with velocities reaching up to about 0.08 nm/ps was observed. Through systematic exploration of various parameters such as temperature, nanotube diameter, and size, we were able to elucidate the underlying mechanisms driving propulsion. Our findings demonstrate that the propulsive motion predominantly arises from a rocket-like mechanism facilitated by the progressive evaporation of water molecules entrapped within the carbon nanotube. Therefore, this study focuses on the complex interplay between nanoscale geometry, environmental conditions, and propulsion mechanisms in capped nanotubes, providing relevant insights into the design and optimization of nanoscale propulsion systems with various applications in nanotechnology and beyond.

Rocket Dynamics of Capped Nanotubes: A Molecular Dynamics Study / Hamad, Mustafa S.; Morciano, Matteo; Fasano, Matteo. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 14:13(2024). [10.3390/nano14131134]

Rocket Dynamics of Capped Nanotubes: A Molecular Dynamics Study

Morciano, Matteo;Fasano, Matteo
2024

Abstract

The study of nanoparticle motion has fundamental relevance in a wide range of nanotechnology-based fields. Molecular dynamics simulations offer a powerful tool to elucidate the dynamics of complex systems and derive theoretical models that facilitate the invention and optimization of novel devices. This research contributes to this ongoing effort by investigating the motion of one-end capped carbon nanotubes within an aqueous environment through extensive molecular dynamics simulations. By exposing the carbon nanotubes to localized heating, propelled motion with velocities reaching up to about 0.08 nm/ps was observed. Through systematic exploration of various parameters such as temperature, nanotube diameter, and size, we were able to elucidate the underlying mechanisms driving propulsion. Our findings demonstrate that the propulsive motion predominantly arises from a rocket-like mechanism facilitated by the progressive evaporation of water molecules entrapped within the carbon nanotube. Therefore, this study focuses on the complex interplay between nanoscale geometry, environmental conditions, and propulsion mechanisms in capped nanotubes, providing relevant insights into the design and optimization of nanoscale propulsion systems with various applications in nanotechnology and beyond.
2024
File in questo prodotto:
File Dimensione Formato  
nanomaterials-14-01134.pdf

accesso aperto

Descrizione: manuscript
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 895.61 kB
Formato Adobe PDF
895.61 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990174