Metasurfaces and nanoantennas are redefining what can be achieved in terms of optical beam manipulation, as they provide a versatile design platform towards moulding the flow of light at will. Yet, once a conventional metasurface is designed and realised, its effect on optical beams is repeatable and stationary, thus its performance is 'locked-in' at the fabrication stage. A much wider range of applications, such as dynamic beam steering, reconfigurable and dynamic lensing, optical modulation and reconfigurable spectral filtering, could be achieved if real-time tuning of metasurface optical properties were possible. Chalcogenide phase-change materials, because of their rather unique ability to undergo abrupt, repeatable and non-volatile changes in optical properties when switched between their amorphous and crystalline phases, have in recent years been combined with metasurface architectures to provide a promising platform for the achievement of dynamic tunability. In this paper, the concept of dynamically tunable phase-change metasurfaces is introduced, and recent results spanning the electromagnetic spectrum from the visible right through to the THz regime are presented and discussed. The progress, potential applications, and possible future perspectives of phase-change metasurface technology are highlighted, and requirements for the successful implementation of real-world applications are discussed.

Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz / Ruiz de Galarreta, C.; Carrillo, S. G. -C.; Au, Y. -Y.; Gemo, E.; Trimby, L.; Shields, J.; Humphreys, E.; Faneca, J.; Cai, L.; Baldycheva, A.; Bertolotti, J.; Wright, C. D.. - In: JOURNAL OF OPTICS. - ISSN 2040-8978. - STAMPA. - 22:11(2020). [10.1088/2040-8986/abbb5b]

Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz

Gemo, E.;
2020

Abstract

Metasurfaces and nanoantennas are redefining what can be achieved in terms of optical beam manipulation, as they provide a versatile design platform towards moulding the flow of light at will. Yet, once a conventional metasurface is designed and realised, its effect on optical beams is repeatable and stationary, thus its performance is 'locked-in' at the fabrication stage. A much wider range of applications, such as dynamic beam steering, reconfigurable and dynamic lensing, optical modulation and reconfigurable spectral filtering, could be achieved if real-time tuning of metasurface optical properties were possible. Chalcogenide phase-change materials, because of their rather unique ability to undergo abrupt, repeatable and non-volatile changes in optical properties when switched between their amorphous and crystalline phases, have in recent years been combined with metasurface architectures to provide a promising platform for the achievement of dynamic tunability. In this paper, the concept of dynamically tunable phase-change metasurfaces is introduced, and recent results spanning the electromagnetic spectrum from the visible right through to the THz regime are presented and discussed. The progress, potential applications, and possible future perspectives of phase-change metasurface technology are highlighted, and requirements for the successful implementation of real-world applications are discussed.
File in questo prodotto:
File Dimensione Formato  
Ruiz_de_Galarreta_2020_J._Opt._22_114001.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989978