We perform a variational analysis of an elastic membrane spanning a closed curve which may sustain bending and torsion. First, we deal with parametrized curves and linear elastic membranes proving the existence of equilibria and finding first-order necessary conditions for minimizers computing the first variation. Second, we study a more general case, both for the boundary curve and for the membrane, using the framed curve approach. The infinite dimensional version of the Lagrange multipliers’ method is applied to get the first-order necessary conditions. Finally, a numerical approach is presented and employed in several numerical test cases.
Elastic membranes spanning deformable curves / Ballarin, Francesco; Bevilacqua, Giulia; Lussardi, Luca; Marzocchi, Alfredo. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 0044-2267. - 104:6(2024), pp. 1-33. [10.1002/zamm.202300890]
Elastic membranes spanning deformable curves
Bevilacqua, Giulia;Lussardi, Luca;
2024
Abstract
We perform a variational analysis of an elastic membrane spanning a closed curve which may sustain bending and torsion. First, we deal with parametrized curves and linear elastic membranes proving the existence of equilibria and finding first-order necessary conditions for minimizers computing the first variation. Second, we study a more general case, both for the boundary curve and for the membrane, using the framed curve approach. The infinite dimensional version of the Lagrange multipliers’ method is applied to get the first-order necessary conditions. Finally, a numerical approach is presented and employed in several numerical test cases.File | Dimensione | Formato | |
---|---|---|---|
zamm2024.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
bblm_2024.pdf
embargo fino al 04/04/2025
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2989732