Coating superparamagnetic iron oxide NPs with SiO2 has been established in order to confer stability in acidic media. Acid stability tests were carried out between pH 1 and pH 7 to determine the effectiveness of the SiO2 passivating layer to protect the magnetic Fe3O4 core. Transmission Electron Microscopy (TEM) and zeta potential measurements have shown that uncoated Fe3O4 NPs exhibit rapid agglomeration and dissolution when exposed to acidic media, moving from a zeta potential of - 26 mV to a zeta potential of + 3 mV. In contrast, the SiO2 coating of the Fe3O4 NPs shows a very high degree of stability for over 14 months and the zeta potential of these NPs remained at similar to- 39 mV throughout the acid exposure and they showed no loss in magnetisaton. Due to the use of these NPs as a potential tool for heavy metal extraction, the stability of the surface functionalisation (in this case a phosphate complex) was also assessed. With a constant zeta potential of similar to - 29 mV for POx-SiO2@Fe3O4 NP complex, the phosphate functionality was shown to be highly stable in the acidic conditions simulating the environment of certain nuclear wastes. ATR-FTIR was conducted after acid exposure confirming that the phosphate complex on the surface of the NPs remained present. Finally, preliminary sorption experiments were carried out with Pb(II), where the NP complexes shown complete removal of the heavy metals at pH 3 and pH 5. (C) 2021 Published by Elsevier Inc.

Acid resistant functionalised magnetic nanoparticles for radionuclide and heavy metal adsorption / Aberdeen, S.; Hur, C. A.; Cali', E.; Vandeperre, L.; Ryan, M. P.. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 1095-7103. - 608:Pt 2(2022), pp. 1728-1738. [10.1016/j.jcis.2021.10.030]

Acid resistant functionalised magnetic nanoparticles for radionuclide and heavy metal adsorption

Cali' E.;
2022

Abstract

Coating superparamagnetic iron oxide NPs with SiO2 has been established in order to confer stability in acidic media. Acid stability tests were carried out between pH 1 and pH 7 to determine the effectiveness of the SiO2 passivating layer to protect the magnetic Fe3O4 core. Transmission Electron Microscopy (TEM) and zeta potential measurements have shown that uncoated Fe3O4 NPs exhibit rapid agglomeration and dissolution when exposed to acidic media, moving from a zeta potential of - 26 mV to a zeta potential of + 3 mV. In contrast, the SiO2 coating of the Fe3O4 NPs shows a very high degree of stability for over 14 months and the zeta potential of these NPs remained at similar to- 39 mV throughout the acid exposure and they showed no loss in magnetisaton. Due to the use of these NPs as a potential tool for heavy metal extraction, the stability of the surface functionalisation (in this case a phosphate complex) was also assessed. With a constant zeta potential of similar to - 29 mV for POx-SiO2@Fe3O4 NP complex, the phosphate functionality was shown to be highly stable in the acidic conditions simulating the environment of certain nuclear wastes. ATR-FTIR was conducted after acid exposure confirming that the phosphate complex on the surface of the NPs remained present. Finally, preliminary sorption experiments were carried out with Pb(II), where the NP complexes shown complete removal of the heavy metals at pH 3 and pH 5. (C) 2021 Published by Elsevier Inc.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021979721016994-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989721