This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the laminate by reversibly clamping its boundaries. In this paper, a numerical analysis of the sensitivity of the local-IET to the delamination damage mechanism is conducted. Firstly, a Finite Element (FE) model of the local-IET test is determined through experimental investigations on undamaged composite laminates, which cover a wide range and are made of glass or carbon fibers, through resin infusion or pre-preg consolidation and with unidirectional or fabric textures. The vibrational response of a glass fiber composite with local delamination is then assessed with the local-IET. By modeling the delamination in the simulation environment, the effectiveness of the FE model in replicating the vibrational response, even in the presence of delamination, is shown through a comparison with the experimental results. Finally, the FE model is exploited to perform a sensitivity analysis, showing that the technique is able to detect the presence of delamination.
Delamination Assessment in Composite Laminates through Local Impulse Excitation Technique (IET) / Boursier Niutta, Carlo; Padula, Pierpaolo; Tridello, Andrea; Boccaccio, Marco; Acerra, Francesco; Paolino, Davide S.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 14:7(2024). [10.3390/app14073023]
Delamination Assessment in Composite Laminates through Local Impulse Excitation Technique (IET)
Boursier Niutta, Carlo;Tridello, Andrea;Paolino, Davide S.
2024
Abstract
This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the laminate by reversibly clamping its boundaries. In this paper, a numerical analysis of the sensitivity of the local-IET to the delamination damage mechanism is conducted. Firstly, a Finite Element (FE) model of the local-IET test is determined through experimental investigations on undamaged composite laminates, which cover a wide range and are made of glass or carbon fibers, through resin infusion or pre-preg consolidation and with unidirectional or fabric textures. The vibrational response of a glass fiber composite with local delamination is then assessed with the local-IET. By modeling the delamination in the simulation environment, the effectiveness of the FE model in replicating the vibrational response, even in the presence of delamination, is shown through a comparison with the experimental results. Finally, the FE model is exploited to perform a sensitivity analysis, showing that the technique is able to detect the presence of delamination.File | Dimensione | Formato | |
---|---|---|---|
applsci-14-03023-v2.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
8.41 MB
Formato
Adobe PDF
|
8.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2989425