This work presents a systematic study of the sensitivities of silicon avalanche photodiode (APD) performance metrics, including gain, excess noise, and bandwidth, to potential variabilities in the fabrication process. The APDs simulations are performed using a state-of-the-art Full-Band Monte Carlo (FBMC) device simulator with the integrated band structure and scattering rates calculated ab−initio with density-functional theory (DFT). The focus of this work is placed on the performance of CMOS-compatible lateral transport separate-absorber-multiplier APDs (SAM APDs) fabricated on an SOI layer. The FBMC material models are validated against experimental data for carrier velocities and impact ionization coefficients, in addition to the reported APD performance of a germanium-on-silicon (Ge-on-Si) separate-absorber-charge-multiplier APD (SACM APD). The fabrication variations considered for the SAM APD include slight variations to the doping concentration and physical dimensions of the multiplier and absorber regions, as well as the thickness of the SOI layer. The results show that fabrication variations may have significant effects on the gain of the APD, but minimally affect the excess noise factor and bandwidth of the devices.

Modeling the Impact of Fabrication Variabilities on the Performance of Silicon Avalanche Photodetectors / Liu, David; Errico, Luca F.; Alasio, Mgc.; Zhu, Mike; Bellotti, Enrico. - In: IEEE PHOTONICS JOURNAL. - ISSN 1943-0655. - ELETTRONICO. - 16:3(2024), pp. 1-11. [10.1109/jphot.2024.3393366]

Modeling the Impact of Fabrication Variabilities on the Performance of Silicon Avalanche Photodetectors

Alasio MGC.;
2024

Abstract

This work presents a systematic study of the sensitivities of silicon avalanche photodiode (APD) performance metrics, including gain, excess noise, and bandwidth, to potential variabilities in the fabrication process. The APDs simulations are performed using a state-of-the-art Full-Band Monte Carlo (FBMC) device simulator with the integrated band structure and scattering rates calculated ab−initio with density-functional theory (DFT). The focus of this work is placed on the performance of CMOS-compatible lateral transport separate-absorber-multiplier APDs (SAM APDs) fabricated on an SOI layer. The FBMC material models are validated against experimental data for carrier velocities and impact ionization coefficients, in addition to the reported APD performance of a germanium-on-silicon (Ge-on-Si) separate-absorber-charge-multiplier APD (SACM APD). The fabrication variations considered for the SAM APD include slight variations to the doping concentration and physical dimensions of the multiplier and absorber regions, as well as the thickness of the SOI layer. The results show that fabrication variations may have significant effects on the gain of the APD, but minimally affect the excess noise factor and bandwidth of the devices.
File in questo prodotto:
File Dimensione Formato  
2024LiuD_PJ.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989093