Objective: In young patients, aortic valve disease is often treated by placement of a pulmonary autograft (PA) which adapts to its new environment through growth and remodeling. To better understand the hemodynamic forces acting on the highly distensible PA in the acute phase after surgery, we developed a fluid-structure interaction (FSI) framework and comprehensively compared hemodynamics and wall shear-stress (WSS) metrics with a computational fluid dynamic (CFD) simulation. Methods: The FSI framework couples a prestressed non-linear hyperelastic arterial tissue model with a fluid model using the in-house coupling code CoCoNuT. Geometry, material parameters and boundary conditions are based on in-vivo measurements. Hemodynamics, time-averaged WSS (TAWSS), oscillatory shear index (OSI) and topological shear variation index (TSVI) are evaluated qualitatively and quantitatively for 3 different sheeps. Results: Despite systolic-to-diastolic volumetric changes of the PA in the order of 20 %, the point-by-point correlation of TAWSS and OSI obtained through CFD and FSI remains high (r > 0.9, p < 0.01) for TAWSS and (r > 0.8, p < 0.01) for OSI). Instantaneous WSS divergence patterns qualitatively preserve similarities, but large deformations of the PA leads to a decrease of the correlation between FSI and CFD resolved TSVI (r < 0.7, p < 0.01). Moderate co-localization between FSI and CFD is observed for low thresholds of TAWSS and high thresholds of OSI and TSVI. Conclusion: FSI might be warranted if we were to use the TSVI as a mechano-biological driver for growth and remodeling of PA due to varying intra-vascular flow structures and near wall hemodynamics because of the large expansion of the PA.
Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach / Balasubramanya, Amith; Maes, Lauranne; Rega, Filip; Mazzi, Valentina; Morbiducci, Umberto; Famaey, Nele; Degroote, Joris; Segers, Patrick. - In: COMPUTERS IN BIOLOGY AND MEDICINE. - ISSN 0010-4825. - 176:(2024). [10.1016/j.compbiomed.2024.108604]
Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach
Mazzi, Valentina;Morbiducci, Umberto;
2024
Abstract
Objective: In young patients, aortic valve disease is often treated by placement of a pulmonary autograft (PA) which adapts to its new environment through growth and remodeling. To better understand the hemodynamic forces acting on the highly distensible PA in the acute phase after surgery, we developed a fluid-structure interaction (FSI) framework and comprehensively compared hemodynamics and wall shear-stress (WSS) metrics with a computational fluid dynamic (CFD) simulation. Methods: The FSI framework couples a prestressed non-linear hyperelastic arterial tissue model with a fluid model using the in-house coupling code CoCoNuT. Geometry, material parameters and boundary conditions are based on in-vivo measurements. Hemodynamics, time-averaged WSS (TAWSS), oscillatory shear index (OSI) and topological shear variation index (TSVI) are evaluated qualitatively and quantitatively for 3 different sheeps. Results: Despite systolic-to-diastolic volumetric changes of the PA in the order of 20 %, the point-by-point correlation of TAWSS and OSI obtained through CFD and FSI remains high (r > 0.9, p < 0.01) for TAWSS and (r > 0.8, p < 0.01) for OSI). Instantaneous WSS divergence patterns qualitatively preserve similarities, but large deformations of the PA leads to a decrease of the correlation between FSI and CFD resolved TSVI (r < 0.7, p < 0.01). Moderate co-localization between FSI and CFD is observed for low thresholds of TAWSS and high thresholds of OSI and TSVI. Conclusion: FSI might be warranted if we were to use the TSVI as a mechano-biological driver for growth and remodeling of PA due to varying intra-vascular flow structures and near wall hemodynamics because of the large expansion of the PA.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0010482524006899-main_compressed.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2988981