This study presents a comprehensive understanding of the fatigue behavior of 316L stainless steel specimens produced using the laser powder bed fusion (PBF-LB/M) method. The investigation has been conducted through a multifaceted approach that includes surface roughness analysis, density measurements, microstructural examination, fatigue testing, strain measurements, and thermographic analysis. Thermographic data processing models, i.e. the bipower law (TCM-modified) model and the TCM method, are applied to fatigue test results of standard samples to evaluate fatigue limit values. The fatigue limit of the samples was estimated using the Murakami Method (MM), Constant Amplitude Loading (CAL) and Step Loading (SL) tests. The proposed methodology allows exploration of the entire stress level range within a single test, which could allow evaluation of the fatigue limit of components within only one test. This study is the starting point for a rapid evaluation method for estimating the fatigue limit using thermography, offering a cost-effective, time-efficient, and non-destructive means of assessing the fatigue performance of materials produced using additive manufacturing processes.

Dissipative and thermal aspects in cyclic loading of additive manufactured AISI 316L / Santoro, Luca; Sesana, Raffaella; Diller, Johannes; Radlbeck, Christina; Mensinger, Martin. - In: ENGINEERING FAILURE ANALYSIS. - ISSN 1350-6307. - 163:A(2024). [10.1016/j.engfailanal.2024.108446]

Dissipative and thermal aspects in cyclic loading of additive manufactured AISI 316L

Santoro, Luca;Sesana, Raffaella;
2024

Abstract

This study presents a comprehensive understanding of the fatigue behavior of 316L stainless steel specimens produced using the laser powder bed fusion (PBF-LB/M) method. The investigation has been conducted through a multifaceted approach that includes surface roughness analysis, density measurements, microstructural examination, fatigue testing, strain measurements, and thermographic analysis. Thermographic data processing models, i.e. the bipower law (TCM-modified) model and the TCM method, are applied to fatigue test results of standard samples to evaluate fatigue limit values. The fatigue limit of the samples was estimated using the Murakami Method (MM), Constant Amplitude Loading (CAL) and Step Loading (SL) tests. The proposed methodology allows exploration of the entire stress level range within a single test, which could allow evaluation of the fatigue limit of components within only one test. This study is the starting point for a rapid evaluation method for estimating the fatigue limit using thermography, offering a cost-effective, time-efficient, and non-destructive means of assessing the fatigue performance of materials produced using additive manufacturing processes.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1350630724004928-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2988863