We show a result on propagation of the anisotropic Gabor wave front set for linear operators with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrodinger equation for the free particle. The Laplacian is replaced by any partial differential operator with constant coefficients, real symbol and order at least two.

Propagation of anisotropic Gabor wave front sets / Wahlberg, Patrik. - In: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY. - ISSN 0013-0915. - (2024), pp. 1-25. [10.1017/s0013091524000269]

Propagation of anisotropic Gabor wave front sets

Wahlberg, Patrik
2024

Abstract

We show a result on propagation of the anisotropic Gabor wave front set for linear operators with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrodinger equation for the free particle. The Laplacian is replaced by any partial differential operator with constant coefficients, real symbol and order at least two.
File in questo prodotto:
File Dimensione Formato  
propagation-of-anisotropic-gabor-wave-front-sets.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 468.03 kB
Formato Adobe PDF
468.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
wahlberg2.pdf

embargo fino al 22/10/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 367.43 kB
Formato Adobe PDF
367.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2988212