Carbon dioxide (CO2) hydrogenation to obtain valuable chemicals and fuels via thermocatalysis or electrocatalysis is a promising and sustainable method for CO2 utilization. Here, binary In-Cu oxide co-precipitated materials were investigated to evaluate the catalytic performance in the mentioned conversion processes. The In-rich binary material exhibits remarkable selectivity (>60%) to methanol along with high activity for CO2 conversion (>2%) at 21 bar and 300 °C, achieving a productivity of about 265 mgMeOH h−1 gIn2O3−1, which is almost 3 times higher than that of the bare In2O3 catalyst. CO2-temperature programmed desorption revealed that the basicity of the In-rich catalyst remains constant between the calcined and spent samples, so the capacity to adsorb CO2 does not vary when the catalyst is exposed to the reaction atmosphere. Such a catalyst was demonstrated to be active for formate production in the electrochemical process as the main product. Ex situ characterization after testing proved that the In2O3 phase was the active site of methanol synthesis during CO2 hydrogenation at high temperatures and pressures. In contrast, depending on the cell configuration, different indium interfaces were stabilized at the electrocatalyst surface under ambient conditions. It is envisioned that the co-presence of In0, In2O3, and In(OH)3 phases increases the local amount of *CO intermediates, promoting the formation of more reduced products, such as ethanol and 2-propanol, through the *CO dimerization reaction in the electrochemical process. These findings highlight the potential of nonreducible hydroxides as promoters in the electrochemical CO2 reduction process.
Development of In–Cu binary oxide catalysts for hydrogenating CO2 via thermocatalytic and electrocatalytic routes / Mezzapesa, Marco Pietro; Salomone, Fabio; Guzmán, Hilmar; Zammillo, Federica; Millini, Roberto; Bua, Letizia; Marra, Gianluigi; Tacca, Alessandra; Marrazzo, Rosamaria; Russo, Nunzio; Pirone, Raffaele; Hernandez, Simelys; Bensaid, Samir. - In: INORGANIC CHEMISTRY FRONTIERS. - ISSN 2052-1553. - ELETTRONICO. - 11:(2024), pp. 2319-2338. [10.1039/d3qi02499g]
Development of In–Cu binary oxide catalysts for hydrogenating CO2 via thermocatalytic and electrocatalytic routes
Mezzapesa, Marco Pietro;Salomone, Fabio;Guzmán, Hilmar;Zammillo, Federica;Russo, Nunzio;Pirone, Raffaele;Hernandez, Simelys;Bensaid, Samir
2024
Abstract
Carbon dioxide (CO2) hydrogenation to obtain valuable chemicals and fuels via thermocatalysis or electrocatalysis is a promising and sustainable method for CO2 utilization. Here, binary In-Cu oxide co-precipitated materials were investigated to evaluate the catalytic performance in the mentioned conversion processes. The In-rich binary material exhibits remarkable selectivity (>60%) to methanol along with high activity for CO2 conversion (>2%) at 21 bar and 300 °C, achieving a productivity of about 265 mgMeOH h−1 gIn2O3−1, which is almost 3 times higher than that of the bare In2O3 catalyst. CO2-temperature programmed desorption revealed that the basicity of the In-rich catalyst remains constant between the calcined and spent samples, so the capacity to adsorb CO2 does not vary when the catalyst is exposed to the reaction atmosphere. Such a catalyst was demonstrated to be active for formate production in the electrochemical process as the main product. Ex situ characterization after testing proved that the In2O3 phase was the active site of methanol synthesis during CO2 hydrogenation at high temperatures and pressures. In contrast, depending on the cell configuration, different indium interfaces were stabilized at the electrocatalyst surface under ambient conditions. It is envisioned that the co-presence of In0, In2O3, and In(OH)3 phases increases the local amount of *CO intermediates, promoting the formation of more reduced products, such as ethanol and 2-propanol, through the *CO dimerization reaction in the electrochemical process. These findings highlight the potential of nonreducible hydroxides as promoters in the electrochemical CO2 reduction process.File | Dimensione | Formato | |
---|---|---|---|
Development of In–Cu binary oxide catalysts for hydrogenating CO2via thermocatalytic and electrocatalytic routes.pdf
accesso aperto
Descrizione: Paper
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.83 MB
Formato
Adobe PDF
|
3.83 MB | Adobe PDF | Visualizza/Apri |
SI - Development of In–Cu binary oxide catalysts for hydrogenating CO2via thermocatalytic and electrocatalytic routes.pdf
accesso aperto
Descrizione: Supporting Information
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2988113