Tocopherols are fat soluble substances with antioxidant properties. The α-Tocopherol (T) is the major form of Tocopherols and can decrease the risk of cancer. F127-based and Lignin-based oil-in-water microemulsions seem to increase the bioavailability of T and cause better release of this therapeutic agent. Thus, T-loaded microemulsions were designed by means of density functional theory (DFT) and semi-empirical methods. Atoms in molecules (AIM), natural bond orbital (NBO) analyses, localized molecular orbital energy decomposition analysis (LMO-EDA), and density of states plots were employed to explore the effective factors on the strength of the interactions between surfactants and T. Results indicate that F127-T complexes are more stable than Lignin-T ones. Furthermore, the stable release of T in microemulsions is due to the electrostatic interactions between surfactants and T. Formation of hydrogen bond (HB) interactions between surfactants and T stabilizes the microemulsion system. These interplays are suggested to take part in the better function of T in microemulsions compared to free T. The semi-empirical study reveals that the heats of formation (ΔHf values) of the F127-T complexes are less negative than those for the Lignin-T ones.
Interactions of α-Tocopherol in F127/lignin microemulsions: A DFT and semi-empirical study / Karimi, P.; Rahdar, A.; Baino, F.. - In: JCIS OPEN. - ISSN 2666-934X. - ELETTRONICO. - 13:(2024). [10.1016/j.jciso.2024.100105]
Interactions of α-Tocopherol in F127/lignin microemulsions: A DFT and semi-empirical study
Baino F.
2024
Abstract
Tocopherols are fat soluble substances with antioxidant properties. The α-Tocopherol (T) is the major form of Tocopherols and can decrease the risk of cancer. F127-based and Lignin-based oil-in-water microemulsions seem to increase the bioavailability of T and cause better release of this therapeutic agent. Thus, T-loaded microemulsions were designed by means of density functional theory (DFT) and semi-empirical methods. Atoms in molecules (AIM), natural bond orbital (NBO) analyses, localized molecular orbital energy decomposition analysis (LMO-EDA), and density of states plots were employed to explore the effective factors on the strength of the interactions between surfactants and T. Results indicate that F127-T complexes are more stable than Lignin-T ones. Furthermore, the stable release of T in microemulsions is due to the electrostatic interactions between surfactants and T. Formation of hydrogen bond (HB) interactions between surfactants and T stabilizes the microemulsion system. These interplays are suggested to take part in the better function of T in microemulsions compared to free T. The semi-empirical study reveals that the heats of formation (ΔHf values) of the F127-T complexes are less negative than those for the Lignin-T ones.File | Dimensione | Formato | |
---|---|---|---|
Tocopherol-lignin-F127_JCIS Open 2024.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987974