Bone scaffolding is a promising approach for the treatment of critical-size bone defects. Hydroxyapatite can be used to produce highly porous scaffolds as it mimics the mineralized part of bone tissue, but its intrinsic brittleness limits its usage. Among 3D printing techniques, vat photopolymerization allows for the best printing resolution for ceramic materials. In this study, we implemented a Computed micro-Tomography based Finite Element Model of a hydroxyapatite porous scaffold fabricated by vat photopolymerization. We used the model in order to predict the elastic and fracture properties of the scaffold. From the stress-strain diagram of a simulated compression test, we computed the stiffness and the strength of the scaffolds. We found that three morphometric features substantially affect the crack pattern. In particular, the crack propagation is not only dependent on the trabecular thickness but also depends on the slenderness and orientation of the trabeculae with respect to the load. The results found in this study can be used for the design of ceramic scaffolds with heterogeneous pore distribution in order to tailor and predict the compressive strength.

Computational models for the simulation of the elastic and fracture properties of highly porous 3D-printed hydroxyapatite scaffolds / D'Andrea, L.; Gastaldi, D.; Baino, F.; Verne', E.; Schwentenwein, M.; Orlygsson, G.; Vena, P.. - In: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING. - ISSN 2040-7939. - ELETTRONICO. - 40:2(2024). [10.1002/cnm.3795]

Computational models for the simulation of the elastic and fracture properties of highly porous 3D-printed hydroxyapatite scaffolds

Baino F.;Verne' E.;
2024

Abstract

Bone scaffolding is a promising approach for the treatment of critical-size bone defects. Hydroxyapatite can be used to produce highly porous scaffolds as it mimics the mineralized part of bone tissue, but its intrinsic brittleness limits its usage. Among 3D printing techniques, vat photopolymerization allows for the best printing resolution for ceramic materials. In this study, we implemented a Computed micro-Tomography based Finite Element Model of a hydroxyapatite porous scaffold fabricated by vat photopolymerization. We used the model in order to predict the elastic and fracture properties of the scaffold. From the stress-strain diagram of a simulated compression test, we computed the stiffness and the strength of the scaffolds. We found that three morphometric features substantially affect the crack pattern. In particular, the crack propagation is not only dependent on the trabecular thickness but also depends on the slenderness and orientation of the trabeculae with respect to the load. The results found in this study can be used for the design of ceramic scaffolds with heterogeneous pore distribution in order to tailor and predict the compressive strength.
File in questo prodotto:
File Dimensione Formato  
DLP HAp mech prop_Int J Num Meth Biomed Eng 2024.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987961