We present an optical metasurface with symmetrical individual elements sustaining Fano resonances with high Q-factors. This study combines plane-wave illumination and modal analysis to investigate the resonant behavior that results in a suppression of the forward scattering, and we investigate the role of the lattice constant on the excited multipoles and on the spectral position and Q-factor of the Fano resonances, revealing the nonlocal nature of the resonances. The results show that the intrinsic losses play a crucial role in modulating the resonance amplitude in specific conditions and that the optical behavior of the device is extremely sensitive to the pitch of the metasurface. The findings highlight the importance of near-neighbor interactions to achieve high Q resonances and offer an important tool for the design of spectrally tunable metasurfaces using simple geometries.
Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances / Bonino, Vittorio; Angelini, Angelo. - In: OPTICS. - ISSN 2673-3269. - 5:2(2024), pp. 238-247. [10.3390/opt5020017]
Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances
Vittorio Bonino;Angelo Angelini
2024
Abstract
We present an optical metasurface with symmetrical individual elements sustaining Fano resonances with high Q-factors. This study combines plane-wave illumination and modal analysis to investigate the resonant behavior that results in a suppression of the forward scattering, and we investigate the role of the lattice constant on the excited multipoles and on the spectral position and Q-factor of the Fano resonances, revealing the nonlocal nature of the resonances. The results show that the intrinsic losses play a crucial role in modulating the resonance amplitude in specific conditions and that the optical behavior of the device is extremely sensitive to the pitch of the metasurface. The findings highlight the importance of near-neighbor interactions to achieve high Q resonances and offer an important tool for the design of spectrally tunable metasurfaces using simple geometries.File | Dimensione | Formato | |
---|---|---|---|
optics-05-00017.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987877