: Selective nanofiltration membranes with accurate molecular sieving offer a solution to recover rare metals and other valuable elements from brines. However, the development of membranes with precise sub-nanometer pores is challenging. Here, we report a scalable approach for membrane fabrication in which functionalized macrocycles are seamlessly oriented via supramolecular interactions during the interfacial polycondensation on a polyacrylonitrile support layer. The rational incorporation of macrocycles enables the formation of nanofilms with self-assembled channels holding precise molecular sieving capabilities and a threshold of 6.6 ångström, which corresponds to the macrocycle cavity size. The resulting membranes provide a 100-fold increase in selectivity for Li+/Mg2+ separation, outperforming commercially available and state-of-the-art nanocomposite membranes for lithium recovery. Their performance is further assessed in high-recovery tests under realistic nanofiltration conditions using simulated brines or concentrated seawater with various Li+ levels and demonstrates their remarkable potential in ion separation and Li+ recovery applications.
Precision ion separation via self-assembled channels / Hong, Shanshan; Di Vincenzo, Maria; Tiraferri, Alberto; Bertozzi, Erica; Górecki, Radosław; Davaasuren, Bambar; Li, Xiang; Nunes, Suzana P.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 15:1(2024), pp. 1-9. [10.1038/s41467-024-47083-0]
Precision ion separation via self-assembled channels
Tiraferri, Alberto;Bertozzi, Erica;
2024
Abstract
: Selective nanofiltration membranes with accurate molecular sieving offer a solution to recover rare metals and other valuable elements from brines. However, the development of membranes with precise sub-nanometer pores is challenging. Here, we report a scalable approach for membrane fabrication in which functionalized macrocycles are seamlessly oriented via supramolecular interactions during the interfacial polycondensation on a polyacrylonitrile support layer. The rational incorporation of macrocycles enables the formation of nanofilms with self-assembled channels holding precise molecular sieving capabilities and a threshold of 6.6 ångström, which corresponds to the macrocycle cavity size. The resulting membranes provide a 100-fold increase in selectivity for Li+/Mg2+ separation, outperforming commercially available and state-of-the-art nanocomposite membranes for lithium recovery. Their performance is further assessed in high-recovery tests under realistic nanofiltration conditions using simulated brines or concentrated seawater with various Li+ levels and demonstrates their remarkable potential in ion separation and Li+ recovery applications.File | Dimensione | Formato | |
---|---|---|---|
s41467-024-47083-0.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
6.67 MB
Formato
Adobe PDF
|
6.67 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987763