The exact, non perturbative, response theory developed within the field of non-equilibrium molecular dynamics, also known as TTCF (transient time correlation function), applies to quite general dynamical systems. Its key element is called the dissipation function because it represents the power dissipated by external fields acting on the particle system of interest, whose coupling with the environment is given by deterministic thermostats. This theory has been initially developed for timeindependent external perturbations, and then it has been extended to time-dependent perturbations. It has also been applied to dynamical systems of different nature, and to oscillator models undergoing phase transitions, which cannot be treated with, e.g., linear response theory. The present work includes time-dependent stochastic perturbations in the theory using the Karhunen–Loève theorem. This leads to three different investigations of a given process. In the first, a single realization of the stochastic coefficients is fixed, and averages are taken only over the initial conditions, as in a deterministic process. In the second, the initial condition is fixed, and averages are taken with respect to the distribution of stochastic coefficients. In the last investigation, one averages over both initial conditions and stochastic coefficients. We conclude by illustrating the applicability of the resulting exact response theory with simple examples
Exact Response Theory for Time-Dependent and Stochastic Perturbations / Iannella, Leonardo; Rondoni, Lamberto. - In: ENTROPY. - ISSN 1099-4300. - ELETTRONICO. - 26:1(2024), pp. 1-23. [10.3390/e26010012]
Exact Response Theory for Time-Dependent and Stochastic Perturbations
Lamberto Rondoni
2024
Abstract
The exact, non perturbative, response theory developed within the field of non-equilibrium molecular dynamics, also known as TTCF (transient time correlation function), applies to quite general dynamical systems. Its key element is called the dissipation function because it represents the power dissipated by external fields acting on the particle system of interest, whose coupling with the environment is given by deterministic thermostats. This theory has been initially developed for timeindependent external perturbations, and then it has been extended to time-dependent perturbations. It has also been applied to dynamical systems of different nature, and to oscillator models undergoing phase transitions, which cannot be treated with, e.g., linear response theory. The present work includes time-dependent stochastic perturbations in the theory using the Karhunen–Loève theorem. This leads to three different investigations of a given process. In the first, a single realization of the stochastic coefficients is fixed, and averages are taken only over the initial conditions, as in a deterministic process. In the second, the initial condition is fixed, and averages are taken with respect to the distribution of stochastic coefficients. In the last investigation, one averages over both initial conditions and stochastic coefficients. We conclude by illustrating the applicability of the resulting exact response theory with simple examplesFile | Dimensione | Formato | |
---|---|---|---|
IannellaR-ExactResponseTheoryForTimeDependentAndStochasticPerurbations-Entropy2024.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
324.56 kB
Formato
Adobe PDF
|
324.56 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987612