In this paper we discuss function spaces on a general noncompact Lie group, namely the scales of Triebel–Lizorkin and Besov spaces, defined in terms of a sub-Laplacian with drift. The sub-Laplacian is written as the (negative) sum of squares of a collection of left-invariant vector fields satisfying Hörmander’s condition. These spaces were recently introduced by the authors. In this paper we prove a norm characterization in terms of finite differences, the density of test functions, and related isomorphism properties.
Potential Spaces on Lie Groups / Bruno, T.; Peloso, M. M.; Vallarino, M. (SPRINGER INDAM SERIES). - In: Geometric Aspects of Harmonic Analysis[s.l] : Springer Italia, 2021. - ISBN 9783030720575. - pp. 149-192 [10.1007/978-3-030-72058-2_4]
Potential Spaces on Lie Groups
Vallarino M.
2021
Abstract
In this paper we discuss function spaces on a general noncompact Lie group, namely the scales of Triebel–Lizorkin and Besov spaces, defined in terms of a sub-Laplacian with drift. The sub-Laplacian is written as the (negative) sum of squares of a collection of left-invariant vector fields satisfying Hörmander’s condition. These spaces were recently introduced by the authors. In this paper we prove a norm characterization in terms of finite differences, the density of test functions, and related isomorphism properties.File | Dimensione | Formato | |
---|---|---|---|
proc-GAHA-updated150319.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
424.43 kB
Formato
Adobe PDF
|
424.43 kB | Adobe PDF | Visualizza/Apri |
potentialspaces-editoriale.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
469.24 kB
Formato
Adobe PDF
|
469.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987552