Intratumoral immunotherapy holds promise for improving cancer treatment efficacy. However, rapid clearance from the tumor upon bolus volume injections limits efficacy and impedes assessment of dose-dependent effects on the tumor immune microenvironment (TIME). To this end, we developed a drug-agnostic nanofluidic implant to deliver immunotherapy within the tumor, providing a mechanism for sustained and controlled intratumoral dosing. Diffusive drug elution from the implant reservoir is controlled by a nanofluidic membrane, which abrogates rapid drug elimination from the tumor and maximizes immunotherapy localization. Here we first achieve in vitro sustained release of agonist CD40 monoclonal antibody (mAb), anti-programmed death ligand-1 (PDL1) mAb, and immune-cell targeted polymeric prodrugs of Resiquimod (toll-like receptor 7/8,TLR 7/8) and a small molecule STING agonist. We then demonstrated in vivo sustained intratumoral drug localization of agonist CD40 Ab and anti-PDL1 Ab in the 4T1 murine model of triple-negative breast cancer (TNBC). Further, we show highly effective anti-tumor efficacy with radiation therapy and sustained intratumoral co-delivery of agonist CD40 Ab and anti-PDL1 Ab in the EMT6 TNBC murine model. Finally, we demonstrate the versatility of this implant by showing that sustained intratumoral delivery of the STING or Resiquimod polymeric prodrugs strongly inhibits 4T1 tumor growth. Collectively, these results support our nanofluidic system as a therapeutic platform technology to investigate sustained intratumoral dosing of immunotherapy.
Nanofluidic delivery implant sustains localization and maximizes efficacy of intratumoral immunotherapy / Liu, Hsuan-Chen; Di Trani, Nicola; Conte, Marzia; Chuong Nguyen, Dinh; Jokonya, Simbarashe; Wu, Abe; Vander Pol, Robin; Joubert, Ashley L.; Facchi, Ilaria; Wood, Anthony M.; Ho, Jeremy; Pesaresi, Federica; Cauda, Valentina; Chen, Shu-Hsia; Liu, Xuewu; Stayton, Patrick S.; Ying Xuan Chua, Corrine; Grattoni, Alessandro. - In: NANO TODAY. - ISSN 1748-0132. - ELETTRONICO. - 56:(2024), pp. 1-11. [10.1016/j.nantod.2024.102258]
Nanofluidic delivery implant sustains localization and maximizes efficacy of intratumoral immunotherapy
Marzia Conte;Valentina Cauda;
2024
Abstract
Intratumoral immunotherapy holds promise for improving cancer treatment efficacy. However, rapid clearance from the tumor upon bolus volume injections limits efficacy and impedes assessment of dose-dependent effects on the tumor immune microenvironment (TIME). To this end, we developed a drug-agnostic nanofluidic implant to deliver immunotherapy within the tumor, providing a mechanism for sustained and controlled intratumoral dosing. Diffusive drug elution from the implant reservoir is controlled by a nanofluidic membrane, which abrogates rapid drug elimination from the tumor and maximizes immunotherapy localization. Here we first achieve in vitro sustained release of agonist CD40 monoclonal antibody (mAb), anti-programmed death ligand-1 (PDL1) mAb, and immune-cell targeted polymeric prodrugs of Resiquimod (toll-like receptor 7/8,TLR 7/8) and a small molecule STING agonist. We then demonstrated in vivo sustained intratumoral drug localization of agonist CD40 Ab and anti-PDL1 Ab in the 4T1 murine model of triple-negative breast cancer (TNBC). Further, we show highly effective anti-tumor efficacy with radiation therapy and sustained intratumoral co-delivery of agonist CD40 Ab and anti-PDL1 Ab in the EMT6 TNBC murine model. Finally, we demonstrate the versatility of this implant by showing that sustained intratumoral delivery of the STING or Resiquimod polymeric prodrugs strongly inhibits 4T1 tumor growth. Collectively, these results support our nanofluidic system as a therapeutic platform technology to investigate sustained intratumoral dosing of immunotherapy.File | Dimensione | Formato | |
---|---|---|---|
Cauda-Nanofluidic.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
8.16 MB
Formato
Adobe PDF
|
8.16 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987544