This work proposes a domain decomposition method (DDM) based on Huygens' equivalence principle to efficiently perform an adaptive h-refinement technique for the electromagnetic analysis of multiscale structures via surface integral equations (SIEs). The procedure starts with the discretization of the structure under analysis via an initial coarse mesh, divided into domains. Then, each domain is treated independently, and the coupling to the rest of the object is obtained through the electric and magnetic current densities on the equivalent Huygens' surfaces (EHSs), surrounding each domain. From the initial solution, the error is estimated on the whole structure, and an adaptive h-refinement is applied accordingly. Both the error estimation and the adaptive h-refined solution are obtained through the defined EHSs, keeping the problem local. The adaptive h-refinement is obtained by a nonconformal submeshing, where multibranch Rao-Wilton-Glisson (MB-RWG) basis functions are defined. Numerical experiments of multiscale perfect-electric-conductor (PEC) structures in air, analyzed via the combined field integral equation, show the performance of the proposed approach.

On the Use of a Localized Huygens’ Surface Scheme for the Adaptive H-Refinement of Multiscale Problems / Tobon V., Jorge A.; Martin, Victor F.; Serna, Alberto; Peng, Zhen; Vipiana, Francesca. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - STAMPA. - 71:12(2023), pp. 9344-9356. [10.1109/tap.2023.3317972]

On the Use of a Localized Huygens’ Surface Scheme for the Adaptive H-Refinement of Multiscale Problems

Vipiana, Francesca
2023

Abstract

This work proposes a domain decomposition method (DDM) based on Huygens' equivalence principle to efficiently perform an adaptive h-refinement technique for the electromagnetic analysis of multiscale structures via surface integral equations (SIEs). The procedure starts with the discretization of the structure under analysis via an initial coarse mesh, divided into domains. Then, each domain is treated independently, and the coupling to the rest of the object is obtained through the electric and magnetic current densities on the equivalent Huygens' surfaces (EHSs), surrounding each domain. From the initial solution, the error is estimated on the whole structure, and an adaptive h-refinement is applied accordingly. Both the error estimation and the adaptive h-refined solution are obtained through the defined EHSs, keeping the problem local. The adaptive h-refinement is obtained by a nonconformal submeshing, where multibranch Rao-Wilton-Glisson (MB-RWG) basis functions are defined. Numerical experiments of multiscale perfect-electric-conductor (PEC) structures in air, analyzed via the combined field integral equation, show the performance of the proposed approach.
File in questo prodotto:
File Dimensione Formato  
On_the_Use_of_a_Localized_Huygens_Surface_Scheme_for_the_Adaptive_H-Refinement_of_Multiscale_Problems.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.55 MB
Formato Adobe PDF
4.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987525