Out-of-distribution detection is one of the most critical issue in the deployment of machine learning. The data analyst must assure that data in operation should be compliant with the training phase as well as understand if the environment has changed in a way that autonomous decisions would not be safe anymore. The method of the paper is based on eXplainable Artificial Intelligence (XAI); it takes into account different metrics to identify any resemblance between in-distribution and out of, as seen by the XAI model. The approach is non-parametric and distributional assumption free. The validation over complex scenarios (predictive maintenance, vehicle platooning, covert channels in cybersecurity) corroborates both precision in detection and evaluation of training-operation conditions proximity.

Rule-Based Out-of-Distribution Detection / De Bernardi, Giacomo; Narteni, Sara; Cambiaso, Enrico; Mongelli, Maurizio. - In: IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE. - ISSN 2691-4581. - (2023), pp. 1-10. [10.1109/TAI.2023.3323923]

Rule-Based Out-of-Distribution Detection

Sara Narteni;
2023

Abstract

Out-of-distribution detection is one of the most critical issue in the deployment of machine learning. The data analyst must assure that data in operation should be compliant with the training phase as well as understand if the environment has changed in a way that autonomous decisions would not be safe anymore. The method of the paper is based on eXplainable Artificial Intelligence (XAI); it takes into account different metrics to identify any resemblance between in-distribution and out of, as seen by the XAI model. The approach is non-parametric and distributional assumption free. The validation over complex scenarios (predictive maintenance, vehicle platooning, covert channels in cybersecurity) corroborates both precision in detection and evaluation of training-operation conditions proximity.
File in questo prodotto:
File Dimensione Formato  
OOD_Detection_IEEE_AI.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987144