Divertor tiles removed after the second JET ITER-Like Wall campaign 2013-2014 (ILW-2) were studied using Secondary Ion Mass Spectrometry (SIMS). Measurements show that the thickest beryllium (Be) dominated deposition layers are located at the upper part of the inner divertor and are up to similar to 40 mu m thick at the lower part of Tile 0 exposed in 2011-2014. The highest deuterium (D) amounts (>8 . 10 18 at./cm(2)), in contrast, were found on the upper part of Tile 1 (2013-2014), where the Be deposits are similar to 10 mu m thick. D was mainly retained in the near-surface layer of the Be deposits but also deeper in tungsten (W) and molybdenum (Mo) layers of the marker coated tiles, especially at W-Mo layer interfaces. D retention for the ILW-2 divertor tiles is higher than for the first campaign 2011-2012 (ILW-1) and probable reasons for the difference are that SIMS measurements for the ILW-2 samples were done deeper than for the ILW-1 samples, some of the tiles were exposed during both ILW-1 and ILW-2 and therefore had a longer exposure time, and the differences between ILW-1 and ILW-2 campaigns e.g. in strike point distributions and injected powers. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
Deuterium retention in the divertor tiles of JET ITER-Like wall / Lahtinen, A.; Likonen, J.; Koivuranta, S.; Hakola, A.; Heinola, K.; Ayres, C. F.; Baron-Wiechec, A.; Coad, J. P.; Widdowson, A.; Räisänen, J.; Subba, F.. - In: NUCLEAR MATERIALS AND ENERGY. - ISSN 2352-1791. - 12:(2017), pp. 655-661. [10.1016/j.nme.2017.04.007]
Deuterium retention in the divertor tiles of JET ITER-Like wall
Subba, F.
2017
Abstract
Divertor tiles removed after the second JET ITER-Like Wall campaign 2013-2014 (ILW-2) were studied using Secondary Ion Mass Spectrometry (SIMS). Measurements show that the thickest beryllium (Be) dominated deposition layers are located at the upper part of the inner divertor and are up to similar to 40 mu m thick at the lower part of Tile 0 exposed in 2011-2014. The highest deuterium (D) amounts (>8 . 10 18 at./cm(2)), in contrast, were found on the upper part of Tile 1 (2013-2014), where the Be deposits are similar to 10 mu m thick. D was mainly retained in the near-surface layer of the Be deposits but also deeper in tungsten (W) and molybdenum (Mo) layers of the marker coated tiles, especially at W-Mo layer interfaces. D retention for the ILW-2 divertor tiles is higher than for the first campaign 2011-2012 (ILW-1) and probable reasons for the difference are that SIMS measurements for the ILW-2 samples were done deeper than for the ILW-1 samples, some of the tiles were exposed during both ILW-1 and ILW-2 and therefore had a longer exposure time, and the differences between ILW-1 and ILW-2 campaigns e.g. in strike point distributions and injected powers. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2352179116301508-main.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986909